1
|
Olasagasti F, Rajamani S. Lipid-Assisted Polymerization of Nucleotides. Life (Basel) 2019; 9:life9040083. [PMID: 31694196 PMCID: PMC6958317 DOI: 10.3390/life9040083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
In addition to being one of the proponents of the “Lipid World hypothesis”, David Deamer, together with other colleagues, pioneered studies involving formation of RNA-like oligomers from their ‘non-activated’, prebiotically plausible monomeric moieties. In particular, the pioneering work in this regard was a publication from 2008 in Origins of Life and Evolution of Biospheres, The Journal of the International Astrobiology Society, wherein we described the formation of RNA-like oligomers from nucleoside 5’-monophosphates. In that study, we had simulated a terrestrial geothermal environment, a niche that is thought to have facilitated the prebiotic non-enzymatic synthesis of polynucleotides. We showed that a mixture of lipids and non-activated mononucleotides resulted in the formation of relatively long strands of RNA-like polymers when subjected to repeated cycles of dehydration and rehydration (DH-RH). Since 2008, terrestrial geothermal niches and DH-RH conditions have been explored in the context of several other prebiotic processes. In this article, we review the work that we and other researchers have carried out since then in this line of research, including the development of new apparatus to carry out the simulation of prebiotic terrestrial geothermal environments.
Collapse
Affiliation(s)
- Felix Olasagasti
- Microfluidics & BIOMICs Cluster, Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Farmazia Fakultatea, Unibertsitateko Ibilbidea 7, 01006 Gasteiz, Basque Country, Spain
- Correspondence:
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Šponer JE, Šponer J, Di Mauro E. Structural and Energetic Compatibility: The Driving Principles of Molecular Evolution. ASTROBIOLOGY 2019; 19:1117-1122. [PMID: 31045430 DOI: 10.1089/ast.2018.1978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we provide an answer to the question formulated by Albert Eschenmoser: "How would you envisage the bridge between potentially primordial geochemistry that had been disordered and one that gradually became self-organizing?" Analysis of the free-energy profiles of some of the key reactions leading to formation of nucleotides and their oligomers shows that, whereas the first part of the pathway, up to nucleotides, is energy-driven, in the second low-energy part entropic control in the form of structural compatibility becomes more important. We suggest that the birth of modern metabolism requires structural compatibility, which is enabled by the commensurability of the thermodynamics of the synthetic steps with the stabilizing effect of those intermolecular interactions that play a key role in dictating entropic control of these reactions.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Ernesto Di Mauro
- Institute for Molecular Biology and Pathology, CNR, c/o Università Sapienza, Roma, Italy
| |
Collapse
|
3
|
Pino S, Di Mauro E, Costanzo G, Saladino R, Šedo O, Zdráhal Z, Šponer J, Šponer JE. Stabilization of Short Oligonucleotides in the Prebiotic Mix: The Potential Role of Amino Alcohols. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Samanta Pino
- Biological and Ecological DepartmentUniversity of Tuscia 01100 Viterbo Italy
| | - Ernesto Di Mauro
- Biological and Ecological DepartmentUniversity of Tuscia 01100 Viterbo Italy
| | - Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari CNR Piazzale Aldo Moro 5 00185 Rome Italy
| | - Raffaele Saladino
- Biological and Ecological DepartmentUniversity of Tuscia 01100 Viterbo Italy
| | - Ondrej Šedo
- CEITEC – Central European Institute of TechnologyMasaryk University Campus Bohunice, Kamenice 5 62500 Brno Czech Republic
| | - Zbyněk Zdráhal
- CEITEC – Central European Institute of TechnologyMasaryk University Campus Bohunice, Kamenice 5 62500 Brno Czech Republic
| | - Jiří Šponer
- CEITEC – Central European Institute of TechnologyMasaryk University Campus Bohunice, Kamenice 5 62500 Brno Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
| | - Judit E. Šponer
- CEITEC – Central European Institute of TechnologyMasaryk University Campus Bohunice, Kamenice 5 62500 Brno Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
| |
Collapse
|
4
|
Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA. Life (Basel) 2018; 8:life8020024. [PMID: 29925796 PMCID: PMC6027154 DOI: 10.3390/life8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.
Collapse
|
5
|
Šponer JE, Szabla R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 2018; 18:20047-66. [PMID: 27136968 DOI: 10.1039/c6cp00670a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
6
|
Šponer JE, Šponer J, Mauro ED. New evolutionary insights into the non-enzymatic origin of RNA oligomers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27785893 DOI: 10.1002/wrna.1400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
Abstract
We outline novel findings on the non-enzymatic polymerization of nucleotides under plausible prebiotic conditions and on the spontaneous onset of informational complexity in the founding molecule, RNA. We argue that the unique ability of 3', 5' cyclic guanosine monophosphate to form stacked architectures and polymerize in a self-sustained manner suggests that this molecule may serve as the 'seed of life' from which all self-replicating oligonucleotides can be derived via a logically complete sequence of simple events. WIREs RNA 2017, 8:e1400. doi: 10.1002/wrna.1400 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ernesto Di Mauro
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
7
|
Šponer JE, Šponer J, Nováková O, Brabec V, Šedo O, Zdráhal Z, Costanzo G, Pino S, Saladino R, Di Mauro E. Emergence of the First Catalytic Oligonucleotides in a Formamide-Based Origin Scenario. Chemistry 2016; 22:3572-86. [PMID: 26807661 DOI: 10.1002/chem.201503906] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 02/02/2023]
Abstract
50 years after the historical Miller-Urey experiment, the formamide-based scenario is perhaps the most powerful concurrent hypothesis for the origin of life on our planet besides the traditional HCN-based concept. The information accumulated during the last 15 years in this topic is astonishingly growing and nowadays the formamide-based model represents one of the most complete and coherent pathways leading from simple prebiotic precursors up to the first catalytically active RNA molecules. In this work, we overview the major events of this long pathway that have emerged from recent experimental and theoretical studies, mainly concentrating on the mechanistic, methodological, and structural aspects of this research.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic.
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic
| | - Olga Nováková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Ondrej Šedo
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic
| | - Zbyněk Zdráhal
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 62500, Brno, Czech Republic
| | - Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, Rome, 00185, Italy
| | - Samanta Pino
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Via San Camillo De Lellis, 01100, Viterbo, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| |
Collapse
|