1
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
2
|
A light-up fluorescence platform based DNA: RNA hybrid G-quadruplet for detecting single nucleotide variant of ctDNA and miRNA-21. Talanta 2023; 257:124373. [PMID: 36801760 DOI: 10.1016/j.talanta.2023.124373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
The nucleic acid assay is an area of great concern in the diagnosis and treatment of breast cancer. Here, we developed a DNA: RNA hybrid G-quadruplet (HQ) detection platform based on strand displacement amplification (SDA) and Baby Spinach RNA aptamer for single nucleotide variant (SNV) of circulating tumor DNA (ctDNA) and miRNA-21. This was the first in vitro construction of HQ for the biosensor. It found that HQ had much stronger ability to switch on fluorescence of DFHBI-1T than Baby Spinach RNA alone. Taking advantage of the platform and the FspI enzyme with high specificity, the biosensor achieved ultra-sensitive detection of SNV of the ctDNA (PIK3CA H1047R gene) and miRNA-21. The light-up biosensor had high anti-interference ability in complex actual samples. Hence, the label-free biosensor provided a sensitive and accurate method for early diagnosis of breast cancer. Moreover, it opened a new application model for RNA aptamers.
Collapse
|
3
|
Vitelli M, Budman H, Pritzker M, Tamer M. Applications of flow cytometry sorting in the pharmaceutical industry: A review. Biotechnol Prog 2021; 37:e3146. [PMID: 33749147 DOI: 10.1002/btpr.3146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Melih Tamer
- Department of Manufacturing Technology, Sanofi Pasteur, Toronto, Canada
| |
Collapse
|
4
|
Gao T, Luo Y, Li W, Cao Y, Pei R. Progress in the isolation of aptamers to light-up the dyes and the applications. Analyst 2020; 145:701-718. [DOI: 10.1039/c9an01825e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in the selection of aptamers to light-up the dyes and the related applications are reviewed.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
5
|
Zinskie JA, Roig M, Janetopoulos C, Myers KA, Bruist MF. Live-cell imaging of small nucleolar RNA tagged with the broccoli aptamer in yeast. FEMS Yeast Res 2019; 18:5078348. [PMID: 30137288 DOI: 10.1093/femsyr/foy093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/20/2018] [Indexed: 11/14/2022] Open
Abstract
The development of the RNA 'vegetable' aptamers, Spinach and Broccoli, has simplified RNA imaging, especially in live cells. These RNA aptamers interact with a fluorophore (DFHBI or DFHBI-1T) to produce a green fluorescence signal. Although used in mammalian and Escherichia coli cells, the use of these aptamers in yeast has been limited. Here we describe how the Saccharomyces cerevisiae snoRNA, snR30, was tagged with the Spinach or the Broccoli aptamers and observed in live cells. The ability to observe aptamer fluorescence in polyacrylamide gels stained with a fluorophore or with a microplate reader can ease preliminary screening of the aptamers in different RNA scaffolds. In snR30 a tandem repeat of the Broccoli aptamer produced the best signal in vitro. Multiple factors in cell preparation were vital for obtaining a good fluorescence signal. These factors included the clearance of the native unmodified snR30, the amount and length of dye incubation and the rinsing of cells. In cells, the aptamers did not interfere with the structure or essential function of snR30, as the tagged RNA localized to the nucleolus and directed processing of ribosomal RNA in yeast. High-resolution images of the tagged snoRNA were obtained with live cells immobilized by a microcompressor.
Collapse
Affiliation(s)
- Jessica A Zinskie
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104.,Rowan University, School of Osteopathic Medicine, Department of Cell Biology and Neuroscience, 2 Medical Center Dr., Stratford, NJ 08084
| | - Meghan Roig
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104.,Florida International University, Department of Biochemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199
| | | | - Kenneth A Myers
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Michael F Bruist
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104
| |
Collapse
|
6
|
Truong L, Ferré-D'Amaré AR. From fluorescent proteins to fluorogenic RNAs: Tools for imaging cellular macromolecules. Protein Sci 2019; 28:1374-1386. [PMID: 31017335 DOI: 10.1002/pro.3632] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
The explosion in genome-wide sequencing has revealed that noncoding RNAs are ubiquitous and highly conserved in biology. New molecular tools are needed for their study in live cells. Fluorescent RNA-small molecule complexes have emerged as powerful counterparts to fluorescent proteins, which are well established, universal tools in the study of proteins in cell biology. No naturally fluorescent RNAs are known; all current fluorescent RNA tags are in vitro evolved or engineered molecules that bind a conditionally fluorescent small molecule and turn on its fluorescence by up to 5000-fold. Structural analyses of several such fluorescence turn-on aptamers show that these compact (30-100 nucleotides) RNAs have diverse molecular architectures that can restrain their photoexcited fluorophores in their maximally fluorescent states, typically by stacking between planar nucleotide arrangements, such as G-quadruplexes, base triples, or base pairs. The diversity of fluorogenic RNAs as well as fluorophores that are cell permeable and bind weakly to endogenous cellular macromolecules has already produced RNA-fluorophore complexes that span the visual spectrum and are useful for tagging and visualizing RNAs in cells. Because the ligand binding sites of fluorogenic RNAs are not constrained by the need to autocatalytically generate fluorophores as are fluorescent proteins, they may offer more flexibility in molecular engineering to generate photophysical properties that are tailored to experimental needs.
Collapse
Affiliation(s)
- Lynda Truong
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, 20892-8012
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, 20892-8012
| |
Collapse
|
7
|
Selection and Characterization of a DNA Aptamer Specifically Targeting Human HECT Ubiquitin Ligase WWP1. Int J Mol Sci 2018. [PMID: 29518962 PMCID: PMC5877624 DOI: 10.3390/ijms19030763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid aptamers hold promise as therapeutic tools for specific, tailored inhibition of protein targets with several advantages when compared to small molecules or antibodies. Nuclear WW domain containing E3 ubiquitin ligase 1 (WWP1) ubiquitin ligase poly-ubiquitinates Runt-related transcription factor 2 (Runx2), a key transcription factor associated with osteoblast differentiation. Since WWP1 and an adapter known as Schnurri-3 are negative regulators of osteoblast function, the disruption of this complex has the potential to increase bone deposition for osteoporosis therapy. Here, we develop new DNA aptamers that bind and inhibit WWP1 then investigate efficacy in an osteoblastic cell culture. DNA aptamers were selected against three different truncations of the HECT domain of WWP1. Aptamers which bind specifically to a C-lobe HECT domain truncation were observed to enrich during the selection procedure. One particular DNA aptamer termed C3A was further evaluated for its ability to bind WWP1 and inhibit its ubiquitination activity. C3A showed a low µM binding affinity to WWP1 and was observed to be a non-competitive inhibitor of WWP1 HECT ubiquitin ligase activity. When SaOS-2 osteoblastic cells were treated with C3A, partial localization to the nucleus was observed. The C3A aptamer was also demonstrated to specifically promote extracellular mineralization in cell culture experiments. The C3A aptamer has potential for further development as a novel osteoporosis therapeutic strategy. Our results demonstrate that aptamer-mediated inhibition of protein ubiquitination can be a novel therapeutic strategy.
Collapse
|
8
|
Bouhedda F, Autour A, Ryckelynck M. Light-Up RNA Aptamers and Their Cognate Fluorogens: From Their Development to Their Applications. Int J Mol Sci 2017; 19:ijms19010044. [PMID: 29295531 PMCID: PMC5795994 DOI: 10.3390/ijms19010044] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
An RNA-based fluorogenic module consists of a light-up RNA aptamer able to specifically interact with a fluorogen to form a fluorescent complex. Over the past decade, significant efforts have been devoted to the development of such modules, which now cover the whole visible spectrum, as well as to their engineering to serve in a wide range of applications. In this review, we summarize the different strategies used to develop each partner (the fluorogen and the light-up RNA aptamer) prior to giving an overview of their applications that range from live-cell RNA imaging to the set-up of high-throughput drug screening pipelines. We then conclude with a critical discussion on the current limitations of these modules and how combining in vitro selection with screening approaches may help develop even better molecules.
Collapse
Affiliation(s)
- Farah Bouhedda
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| | - Alexis Autour
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| | - Michael Ryckelynck
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| |
Collapse
|
9
|
Pfeiffer F, Mayer G. Selection and Biosensor Application of Aptamers for Small Molecules. Front Chem 2016; 4:25. [PMID: 27379229 PMCID: PMC4908669 DOI: 10.3389/fchem.2016.00025] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging.
Collapse
Affiliation(s)
- Franziska Pfeiffer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| | - Günter Mayer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| |
Collapse
|
10
|
A Quarter Century of In Vitro Selection. J Mol Evol 2015; 81:137-9. [PMID: 26597944 DOI: 10.1007/s00239-015-9723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 01/16/2023]
|