1
|
Caetano-Anollés K, Aziz MF, Mughal F, Caetano-Anollés G. On Protein Loops, Prior Molecular States and Common Ancestors of Life. J Mol Evol 2024; 92:624-646. [PMID: 38652291 PMCID: PMC11458777 DOI: 10.1007/s00239-024-10167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The principle of continuity demands the existence of prior molecular states and common ancestors responsible for extant macromolecular structure. Here, we focus on the emergence and evolution of loop prototypes - the elemental architects of protein domain structure. Phylogenomic reconstruction spanning superkingdoms and viruses generated an evolutionary chronology of prototypes with six distinct evolutionary phases defining a most parsimonious evolutionary progression of cellular life. Each phase was marked by strategic prototype accumulation shaping the structures and functions of common ancestors. The last universal common ancestor (LUCA) of cells and viruses and the last universal cellular ancestor (LUCellA) defined stem lines that were structurally and functionally complex. The evolutionary saga highlighted transformative forces. LUCA lacked biosynthetic ribosomal machinery, while the pivotal LUCellA lacked essential DNA biosynthesis and modern transcription. Early proteins therefore relied on RNA for genetic information storage but appeared initially decoupled from it, hinting at transformative shifts of genetic processing. Urancestral loop types suggest advanced folding designs were present at an early evolutionary stage. An exploration of loop geometric properties revealed gradual replacement of prototypes with α-helix and β-strand bracing structures over time, paving the way for the dominance of other loop types. AlphFold2-generated atomic models of prototype accretion described patterns of fold emergence. Our findings favor a ‛processual' model of evolving stem lines aligned with Woese's vision of a communal world. This model prompts discussing the 'problem of ancestors' and the challenges that lie ahead for research in taxonomy, evolution and complexity.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Callout Biotech, Albuquerque, NM, 87112, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Amangeldina A, Tan ZW, Berezovsky IN. Living in trinity of extremes: Genomic and proteomic signatures of halophilic, thermophilic, and pH adaptation. Curr Res Struct Biol 2024; 7:100129. [PMID: 38327713 PMCID: PMC10847869 DOI: 10.1016/j.crstbi.2024.100129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Since nucleic acids and proteins of unicellular prokaryotes are directly exposed to extreme environmental conditions, it is possible to explore the genomic-proteomic compositional determinants of molecular mechanisms of adaptation developed by them in response to harsh environmental conditions. Using a wealth of currently available complete genomes/proteomes we were able to explore signatures of adaptation to three environmental factors, pH, salinity, and temperature, observing major trends in compositions of their nucleic acids and proteins. We derived predictors of thermostability, halophilic, and pH adaptations and complemented them by the principal components analysis. We observed a clear difference between thermophilic and salinity/pH adaptations, whereas latter invoke seemingly overlapping mechanisms. The genome-proteome compositional trade-off reveals an intricate balance between the work of base paring and base stacking in stabilization of coding DNA and r/tRNAs, and, at the same time, universal requirements for the stability and foldability of proteins regardless of the nucleotide biases. Nevertheless, we still found hidden fingerprints of ancient evolutionary connections between the nucleotide and amino acid compositions indicating their emergence, mutual evolution, and adjustment. The evolutionary perspective on the adaptation mechanisms is further studied here by means of the comparative analysis of genomic/proteomic traits of archaeal and bacterial species. The overall picture of genomic/proteomic signals of adaptation obtained here provides a foundation for future engineering and design of functional biomolecules resistant to harsh environments.
Collapse
Affiliation(s)
- Aidana Amangeldina
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N. Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore
| |
Collapse
|
3
|
Caetano-Anollés G, Aziz MF, Mughal F, Caetano-Anollés D. Tracing protein and proteome history with chronologies and networks: folding recapitulates evolution. Expert Rev Proteomics 2021; 18:863-880. [PMID: 34628994 DOI: 10.1080/14789450.2021.1992277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION While the origin and evolution of proteins remain mysterious, advances in evolutionary genomics and systems biology are facilitating the historical exploration of the structure, function and organization of proteins and proteomes. Molecular chronologies are series of time events describing the history of biological systems and subsystems and the rise of biological innovations. Together with time-varying networks, these chronologies provide a window into the past. AREAS COVERED Here, we review molecular chronologies and networks built with modern methods of phylogeny reconstruction. We discuss how chronologies of structural domain families uncover the explosive emergence of metabolism, the late rise of translation, the co-evolution of ribosomal proteins and rRNA, and the late development of the ribosomal exit tunnel; events that coincided with a tendency to shorten folding time. Evolving networks described the early emergence of domains and a late 'big bang' of domain combinations. EXPERT OPINION Two processes, folding and recruitment appear central to the evolutionary progression. The former increases protein persistence. The later fosters diversity. Chronologically, protein evolution mirrors folding by combining supersecondary structures into domains, developing translation machinery to facilitate folding speed and stability, and enhancing structural complexity by establishing long-distance interactions in novel structural and architectural designs.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA.,C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Derek Caetano-Anollés
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Abstract
Domains are the structural, functional and evolutionary units of proteins. They combine to form multidomain proteins. The evolutionary history of this molecular combinatorics has been studied with phylogenomic methods. Here, we construct networks of domain organization and explore their evolution. A time series of networks revealed two ancient waves of structural novelty arising from ancient 'p-loop' and 'winged helix' domains and a massive 'big bang' of domain organization. The evolutionary recruitment of domains was highly modular, hierarchical and ongoing. Domain rearrangements elicited non-random and scale-free network structure. Comparative analyses of preferential attachment, randomness and modularity showed yin-and-yang complementary transition and biphasic patterns along the structural chronology. Remarkably, the evolving networks highlighted a central evolutionary role of cofactor-supporting structures of non-ribosomal peptide synthesis pathways, likely crucial to the early development of the genetic code. Some highly modular domains featured dual response regulation in two-component signal transduction systems with DNA-binding activity linked to transcriptional regulation of responses to environmental change. Interestingly, hub domains across the evolving networks shared the historical role of DNA binding and editing, an ancient protein function in molecular evolution. Our investigation unfolds historical source-sink patterns of evolutionary recruitment that further our understanding of protein architectures and functions.
Collapse
|
5
|
Mughal F, Caetano-Anollés G. MANET 3.0: Hierarchy and modularity in evolving metabolic networks. PLoS One 2019; 14:e0224201. [PMID: 31648227 PMCID: PMC6812854 DOI: 10.1371/journal.pone.0224201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022] Open
Abstract
Enzyme recruitment is a fundamental evolutionary driver of modern metabolism. We see evidence of recruitment at work in the metabolic Molecular Ancestry Networks (MANET) database, an online resource that integrates data from KEGG, SCOP and structural phylogenomic reconstruction. The database, which was introduced in 2006, traces the deep history of the structural domains of enzymes in metabolic pathways. Here we release version 3.0 of MANET, which updates data from KEGG and SCOP, links enzyme and PDB information with PDBsum, and traces evolutionary information of domains defined at fold family level of SCOP classification in metabolic subnetwork diagrams. Compared to SCOP folds used in the previous versions, fold families are cohesive units of functional similarity that are highly conserved at sequence level and offer a 10-fold increase of data entries. We surveyed enzymatic, functional and catalytic site distributions among superkingdoms showing that ancient enzymatic innovations followed a biphasic temporal pattern of diversification typical of module innovation. We grouped enzymatic activities of MANET into a hierarchical system of subnetworks and mesonetworks matching KEGG classification. The evolutionary growth of these modules of metabolic activity was studied using bipartite networks and their one-mode projections at enzyme, subnetwork and mesonetwork levels of organization. Evolving metabolic networks revealed patterns of enzyme sharing that transcended mesonetwork boundaries and supported the patchwork model of metabolic evolution. We also explored the scale-freeness, randomness and small-world properties of evolving networks as possible organizing principles of network growth and diversification. The network structure shows an increase in hierarchical modularity and scale-free behavior as metabolic networks unfold in evolutionary time. Remarkably, this evolutionary constraint on structure was stronger at lower levels of metabolic organization. Evolving metabolic structure reveals a 'principle of granularity', an evolutionary increase of the cohesiveness of lower-level parts of a hierarchical system. MANET is available at http://manet.illinois.edu.
Collapse
Affiliation(s)
- Fizza Mughal
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gustavo Caetano-Anollés
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
6
|
Caetano-Anollés D, Nasir A, Kim KM, Caetano-Anollés G. Testing Empirical Support for Evolutionary Models that Root the Tree of Life. J Mol Evol 2019; 87:131-142. [PMID: 30887086 PMCID: PMC6443624 DOI: 10.1007/s00239-019-09891-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Trees of life (ToLs) can only be rooted with direct methods that seek optimization of character state information in ingroup taxa. This involves optimizing phylogenetic tree, model and data in an exercise of reciprocal illumination. Rooted ToLs have been built from a census of protein structural domains in proteomes using two kinds of models. Fully-reversible models use standard-ordered (additive) characters and Wagner parsimony to generate unrooted trees of proteomes that are then rooted with Weston's generality criterion. Non-reversible models directly build rooted trees with unordered characters and asymmetric stepmatrices of transformation costs that penalize gain over loss of domains. Here, we test the empirical support for the evolutionary models with character state reconstruction methods using two published proteomic datasets. We show that the reversible models match reconstructed frequencies of character change and are faithful to the distribution of serial homologies in trees. In contrast, the non-reversible models go counter to trends in the data they must explain, attracting organisms with large proteomes to the base of the rooted trees while violating the triangle inequality of distances. This can lead to serious reconstruction inconsistencies that show model inadequacy. Our study highlights the aprioristic perils of disposing of countering evidence in natural history reconstruction.
Collapse
Affiliation(s)
- Derek Caetano-Anollés
- Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, Plön, Germany.
| | - Arshan Nasir
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, and Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
|
8
|
Caetano-Anollés G, Nasir A, Kim KM, Caetano-Anollés D. Rooting Phylogenies and the Tree of Life While Minimizing Ad Hoc and Auxiliary Assumptions. Evol Bioinform Online 2018; 14:1176934318805101. [PMID: 30364468 PMCID: PMC6196624 DOI: 10.1177/1176934318805101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
Phylogenetic methods unearth evolutionary history when supported by three starting points of reason: (1) the continuity axiom begs the existence of a "model" of evolutionary change, (2) the singularity axiom defines the historical ground plan (phylogeny) in which biological entities (taxa) evolve, and (3) the memory axiom demands identification of biological attributes (characters) with historical information. Axiom consequences are interlinked, making the retrodiction enterprise an endeavor of reciprocal fulfillment. In particular, establishing direction of evolutionary change (character polarization) roots phylogenies and enables testing the existence of historical memory (homology). Unfortunately, rooting phylogenies, especially the "tree of life," generally follow narratives instead of integrating empirical and theoretical knowledge of retrodictive exploration. This stems mostly from a focus on molecular sequence analysis and uncertainties about rooting methods. Here, we review available rooting criteria, highlighting the need to minimize both ad hoc and auxiliary assumptions, especially argumentative ad hocness. We show that while the outgroup comparison method has been widely adopted, the generality criterion of nesting and additive phylogenetic change embodied in Weston rule offers the most powerful rooting approach. We also propose a change of focus, from phylogenies that describe the evolution of biological systems to those that describe the evolution of parts of those systems. This weakens violation of character independence, helps formalize the generality criterion of rooting, and provides new ways to study the problem of evolution.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Derek Caetano-Anollés
- Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
| |
Collapse
|
9
|
Nasir A, Kim KM, Caetano-Anollés G. Phylogenetic Tracings of Proteome Size Support the Gradual Accretion of Protein Structural Domains and the Early Origin of Viruses from Primordial Cells. Front Microbiol 2017; 8:1178. [PMID: 28690608 PMCID: PMC5481351 DOI: 10.3389/fmicb.2017.01178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2023] Open
Abstract
Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are consistent with the axiom of spatiotemporal continuity that is tenet of evolutionary thinking.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research InstituteIncheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| |
Collapse
|
10
|
Danchin A. From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 2017; 13:1119-1135. [PMID: 28684991 PMCID: PMC5480338 DOI: 10.3762/bjoc.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|