1
|
Liebrenz K, Gómez C, Brambilla S, Frare R, Stritzler M, Maguire V, Ruiz O, Soldini D, Pascuan C, Soto G, Ayub N. Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization. MICROBIAL ECOLOGY 2022; 84:1133-1140. [PMID: 34782938 DOI: 10.1007/s00248-021-01925-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress-resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth-promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.
Collapse
Affiliation(s)
- Karen Liebrenz
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Silvina Brambilla
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Romina Frare
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Margarita Stritzler
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Vanina Maguire
- Instituto Tecnológico Chascomús (INTECH-CONICET), Buenos Aires, Argentina
| | - Oscar Ruiz
- Instituto Tecnológico Chascomús (INTECH-CONICET), Buenos Aires, Argentina
| | - Diego Soldini
- Estación Experimental Agropecuaria Marcos Juárez, INTA, Córdoba, Argentina
| | - Cecilia Pascuan
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología Y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina.
- Instituto de Genética (IGEAF), INTA, De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Frare R, Pascuan C, Galindo-Sotomonte L, McCormick W, Soto G, Ayub N. Exploring the Role of the NO-Detoxifying Enzyme HmpA in the Evolution of Domesticated Alfalfa Rhizobia. MICROBIAL ECOLOGY 2022; 83:501-505. [PMID: 33966095 DOI: 10.1007/s00248-021-01761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We have previously shown the extensive loss of genes during the domestication of alfalfa rhizobia and the high nitrous oxide emission associated with the extreme genomic instability of commercial inoculants. In the present note, we describe the molecular mechanism involved in the evolution of alfalfa rhizobia. Genomic analysis showed that most of the gene losses in inoculants are due to large genomic deletions rather than to small deletions or point mutations, a fact consistent with recurrent DNA double-strand breaks (DSBs) at numerous locations throughout the microbial genome. Genetic analysis showed that the loss of the NO-detoxifying enzyme HmpA in inoculants results in growth inhibition and high DSB levels under nitrosative stress, and large genomic deletions in planta but not in the soil. Therefore, besides its known function in the effective establishment of the symbiosis, HmpA can play a critical role in the preservation of the genomic integrity of alfalfa rhizobia under host-derived nitrosative stress.
Collapse
Affiliation(s)
- Romina Frare
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Cecilia Pascuan
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Luisa Galindo-Sotomonte
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Wayne McCormick
- Ottawa Research and Development Centre (AAFC), Ottawa, ON, Canada
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina.
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Brambilla S, Soto G, Odorizzi A, Arolfo V, McCormick W, Primo E, Giordano W, Jozefkowicz C, Ayub N. Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N 2O-Emitting Alfalfa Rhizobia in Regions with Different Climates. MICROBIAL ECOLOGY 2020; 79:1044-1053. [PMID: 31828388 DOI: 10.1007/s00248-019-01473-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.
Collapse
Affiliation(s)
- Silvina Brambilla
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina
| | - Ariel Odorizzi
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Valeria Arolfo
- Estación Experimental Agropecuaria Manfredi (INTA), Córdoba, Argentina
| | - Wayne McCormick
- Ottawa Research and Development Centre (AAFC), Ottawa, ON, Canada
| | - Emiliano Primo
- Departamento de Biología Molecular (UNRC), Córdoba, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular (UNRC), Córdoba, Argentina
| | - Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina.
- Instituto de Genética (IGEAF-INTA), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Primo ED, Cossovich S, Nievas F, Bogino P, Humm EA, Hirsch AM, Giordano W. Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation. Arch Microbiol 2019; 202:391-398. [PMID: 31680188 DOI: 10.1007/s00203-019-01756-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/22/2023]
Abstract
Bacterial surface molecules have an important role in the rhizobia-legume symbiosis. Ensifer meliloti (previously, Sinorhizobium meliloti), a symbiotic Gram-negative rhizobacterium, produces two different exopolysaccharides (EPSs), termed EPS I (succinoglycan) and EPS II (galactoglucan), with different functions in the symbiotic process. Accordingly, we undertook a study comparing the potential differences in alfalfa nodulation by E. meliloti strains with differences in their EPSs production. Strains recommended for inoculation as well as laboratory strains and native strains isolated from alfalfa fields were investigated. This study concentrated on EPS-II production, which results in mucoid colonies that are dependent on the presence of an intact expR gene. The results revealed that although the studied strains exhibited different phenotypes, the differences did not affect alfalfa nodulation itself. However, subtle changes in timing and efficacy to the effects of inoculation with the different strains may result because of other as-yet unknown factors. Thus, additional research is needed to determine the most effective inoculant strains and the best conditions for improving alfalfa production under agricultural conditions.
Collapse
Affiliation(s)
- Emiliano D Primo
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Sacha Cossovich
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Fiorela Nievas
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Pablo Bogino
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ethan A Humm
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, USA
| | - Ann M Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, USA
| | - Walter Giordano
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
5
|
Thomet M, Trautwetter A, Ermel G, Blanco C. Characterization of HicAB toxin-antitoxin module of Sinorhizobium meliloti. BMC Microbiol 2019; 19:10. [PMID: 30630415 PMCID: PMC6327479 DOI: 10.1186/s12866-018-1382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules. Results In this study, we characterize the HicAB toxin-antitoxin module of S. meliloti. The production of the HicA of S. meliloti in Escherichia coli cells abolishes growth and decreases cell viability. We show that expression of the HicB of S. meliloti counteracts HicA toxicity. The results of double hybrid assays and co-purification experiments allow demonstrating the interaction of HicB with the toxin HicA. Purified HicA, but not HicAB complex, is able to degrade ribosomal RNA in vitro. The analysis of separated domains of HicB protein permits us to define the antitoxin activity and the operator-binding domain. Conclusions This study points out the first characterization of the HicAB system of the symbiotic S. meliloti whereas HicA is a toxin with ribonuclease activity and HicB has two domains: the COOH-terminal one that binds the operator and the NH2-terminal one that inhibits the toxin. Electronic supplementary material The online version of this article (10.1186/s12866-018-1382-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manon Thomet
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Annie Trautwetter
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Gwennola Ermel
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France.
| | - Carlos Blanco
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| |
Collapse
|
6
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
7
|
Brambilla S, Frare R, Soto G, Jozefkowicz C, Ayub N. Absence of the Nitrous Oxide Reductase Gene Cluster in Commercial Alfalfa Inoculants Is Probably Due to the Extensive Loss of Genes During Rhizobial Domestication. MICROBIAL ECOLOGY 2018; 76:299-302. [PMID: 29330647 DOI: 10.1007/s00248-018-1145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
As other legume crops, alfalfa cultivation increases the emission of the greenhouse gas nitrous oxide (N2O). Since legume-symbiotic nitrogen-fixing bacteria play a crucial role in this emission, it is important to understand the possible impacts of rhizobial domestication on the evolution of denitrification genes. In comparison with the genomes of non-commercial strains, those of commercial alfalfa inoculants exhibit low total genome size, low number of ORFs and high numbers of both frameshifted genes and pseudogenes, suggesting a dramatic loss of genes during bacterial domestication. Genomic analysis focused on denitrification genes revealed that commercial strains have perfectly conserved the nitrate (NAP), nitrite (NIR) and nitric (NOR) reductase clusters related to the production of N2O from nitrate but completely lost the nitrous oxide (NOS) reductase cluster (nosRZDFYLX genes) associated with the reduction of N2O to gas nitrogen. Based on these results, we propose future screenings for alfalfa-nodulating isolates containing both nitrogen fixation and N2O reductase genes for environmental sustainability of alfalfa production.
Collapse
Affiliation(s)
- Silvina Brambilla
- Instituto de Genética Ewald A. Favret (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
| | - Romina Frare
- Instituto de Genética Ewald A. Favret (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina
| | - Gabriela Soto
- Instituto de Genética Ewald A. Favret (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina
| | - Cintia Jozefkowicz
- Instituto de Genética Ewald A. Favret (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina
| | - Nicolás Ayub
- Instituto de Genética Ewald A. Favret (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina.
| |
Collapse
|
8
|
Plant growth-promoting bacterium Pseudomonas fluorescens FR1 secrets a novel type of extracellular polyhydroxybutyrate polymerase involved in abiotic stress response in plants. Biotechnol Lett 2018; 40:1419-1423. [DOI: 10.1007/s10529-018-2576-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022]
|