1
|
Gao T, Wang Y, Zhang T, Li R, Sun Y, Zhang K, Xu M, Liu F, Cheng B. Molecular cloning and functional analysis of a destabilase from Hirudinaria manillensis. Protein Expr Purif 2025; 232:106703. [PMID: 40107525 DOI: 10.1016/j.pep.2025.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Destabilases are i-type lysozymes with isopeptidase activity and antibacterial and thrombolytic functions. In recent years, destabliases have been identified in an increasing number of invertebrates. Hirudinaria manillensis belonging to the Annelida, as one of the origins of leeches used in traditional Chinese medicine, which has high medicinal value, there have been few reports on the H. manillensis destabliase. In this study, the cDNA sequence of Hmdestabilase was cloned from the salivary glands of H. manillensis. The 3D Structural analysis indicated that Hmdestabilase is similar to other i-type lysozymes in that it adopts an ellipsoidal shape and has a large cleft containing the lysozyme active site. The docking results of Hmdestabilase protein with N-acetylglucosamine trimer molecule have shown that the location and number of hydrogen bonds are one of the key factors for the interaction between the protein and its substrate. The Hmdestabilase fusion protein obtained through the prokaryotic expression system has lysozyme and isopeptidase activities. In addition, Changes in sodium ion concentration in the environment affect the lysozyme activity of Hmdestabilase fusion protein. The above bioinformatic analysis and enzymatic function studies have shown that Hmdestabilase belongs to the i-type lysozyme family. qPCR analysis revealed that blood feeding significantly increased the mRNA expression of Hmdestabilase in the salivary glands of H. manillensis,and successfully priming the innate immune system against harmful microorganisms ingested with food. This study is helpful to elucidate the innate immune response of H. manillensis and promote the artificial breeding of H. manillensis.
Collapse
Affiliation(s)
- Tianyi Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yun Wang
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China
| | - Tong Zhang
- Guizhou Guangjitang Pharmaceutical Co., Ltd, Guizhou Guangjitang Health Pharmaceutical Co., Ltd, China
| | - Rou Li
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China
| | - Yue Sun
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China
| | - Kui Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China
| | - Min Xu
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, JiangSu, Yancheng, 224051, China
| | - Fei Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Boxing Cheng
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China.
| |
Collapse
|
2
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Costantini D, Weinberg M, Jordán L, Moreno KR, Yovel Y, Czirják GÁ. Induced bacterial sickness causes inflammation but not blood oxidative stress in Egyptian fruit bats ( Rousettus aegyptiacus). CONSERVATION PHYSIOLOGY 2022; 10:coac028. [PMID: 35492418 PMCID: PMC9042053 DOI: 10.1093/conphys/coac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Bats are particularly interesting vertebrates in their response to pathogens owing to extremes in terms of tolerance and resistance. Oxidation is often a by-product of processes involved in the acute phase response, which may result in antimicrobial or self-damaging effects. We measured the immunological and oxidative status responses of Egyptian fruit bats (Rousettus aegyptiacus) to a simulated bacterial infection using lipopolysaccharide injection. As expected, experimental bats exhibited increases in two humoral immunological markers. However, they surprisingly did not show any effects across two markers of oxidative damage and four antioxidant markers. We propose that this lack of effects on oxidative status may be due to a reduction in cell metabolism through sickness behaviours or given life history traits, such as a long lifespan and a frugivorous diet. Finally, the consistency in the pattern of elevation in haptoglobin and lysozyme between current and previous findings highlights their utility as diagnostic markers for extracellular infections in bats.
Collapse
Affiliation(s)
- David Costantini
- Corresponding author: Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d’Histoire Naturelle, CNRS, CP32, 57 rue Cuvier 75005 Paris, France. Tel: 0033(0)140795374,
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Lilla Jordán
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Kelsey R Moreno
- Department of Zoology, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, 6997801 Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| |
Collapse
|
4
|
Song Q, Xiao Y, Xiao Z, Liu T, Li J, Li P, Han F. Lysozymes in Fish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15039-15051. [PMID: 34890178 DOI: 10.1021/acs.jafc.1c06676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, the deterioration of the aquaculture ecological environment has led to a high incidence of fish diseases. Lysozymes, important antimicrobial enzymes, play an important role in the innate immune system of fish. The studies of fish lysozymes benefit the control of fish infections caused by pathogens. In this review, we reviewed recent progress in fish lysozymes, including their classification, structural characteristics, biological functions and mechanisms, tissue distributions, and properties of their recombinant proteins, which will help us to systematically understand the fish lysozymes and facilitate their applications in the fields of food and agriculture.
Collapse
Affiliation(s)
- Qing Song
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Yao Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Zihan Xiao
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Tong Liu
- Sichuan Tengli Agri-Tech Company, Limited, Deyang, Sichuan 618200, People's Republic of China
| | - Jiacheng Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Peng Li
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
5
|
Moreno KR, Weinberg M, Harten L, Salinas Ramos VB, Herrera M LG, Czirják GÁ, Yovel Y. Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Ann N Y Acad Sci 2021; 1505:178-190. [PMID: 33876431 PMCID: PMC9290741 DOI: 10.1111/nyas.14600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Along with its many advantages, social roosting imposes a major risk of pathogen transmission. How social animals reduce this risk is poorly documented. We used lipopolysaccharide challenge to imitate bacterial infection in both a captive and a free‐living colony of an extremely social, long‐lived mammal—the Egyptian fruit bat. We monitored behavioral and physiological responses using an arsenal of methods, including onboard GPS to track foraging, acceleration sensors to monitor movement, infrared video to record social behavior, and blood samples to measure immune markers. Sick‐like (immune‐challenged) bats exhibited an increased immune response, as well as classic illness symptoms, including fever, weight loss, anorexia, and lethargy. Notably, the bats also exhibited behaviors that would reduce pathogen transfer. They perched alone and appeared to voluntarily isolate themselves from the group by leaving the social cluster, which is extremely atypical for this species. The sick‐like individuals in the open colony ceased foraging outdoors for at least two nights, thus reducing transmission to neighboring colonies. Together, these sickness behaviors demonstrate a strong, integrative immune response that promotes recovery of infected individuals while reducing pathogen transmission inside and outside the roost, including spillover events to other species, such as humans.
Collapse
Affiliation(s)
- Kelsey R Moreno
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Lee Harten
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Valeria B Salinas Ramos
- Department of Agriculture, University of Naples Federico II, Naples, Italy.,Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Shen Y, Cao M, Tang S, Zhao Y, Zhao J, Chen X, Bi Y. Genomic and functional characterization of the lect2 gene from Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2020; 107:146-155. [PMID: 32991992 DOI: 10.1016/j.fsi.2020.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/09/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is an important economic fish in China. Viral and bacterial diseases seriously affect the artificial culture of S. chuatsi. As a carnivorous fish, artificial feed domestication is also an important means to improve the scale of S. chuatsi culture. Therefore, the study of immunology and digestive physiology is very important to the industrial development of S. chuatsi. In this work, we analyzed the expression and function of the S. chuatsi leukocyte cell-derived chemotaxin 2 (Sc-lect2) gene on a basis of next generation, single-molecule long-read sequencing. Sc-lect2 was mainly expressed in the liver but barely expressed in the gill, skin, muscle, kidney, head kidney, brain, stomach, and intestine. When the fish were infected with infectious spleen and kidney necrosis virus and challenged with lipopolysaccharide and polyinosinic-polycytidylic acid, Sc-lect2 expression significantly increased by about 40, 17, and 7-fold, respectively, compared with unstimulated samples. We also found that Sc-lect2 increases by approximately 8-fold after the fish are fed an artificial diet. These results show that mandarin fish liver can not only digest food but also express specific immune genes. Changes in the diet can cause the differential expression of Sc-lect2 genes. Four Sc-lect2 interaction genes were differentially expressed in the skin or blood. Interestingly, miR-145-3p could inhibit Sc-lect2 gene expression by targeting its coding sequence region. One CpG island in the promoter region showed a high level of methylation, suggesting that high methylation does not affect Sc-lect2 gene expression in the liver.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ming Cao
- Guangdong Provincial Fishery Germplasm Conservation Center, Guangzhou, 511400, China
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yanhui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|