1
|
Douglas J, Cui H, Perona JJ, Vargas‐Rodriguez O, Tyynismaa H, Carreño CA, Ling J, Ribas de Pouplana L, Yang X, Ibba M, Becker H, Fischer F, Sissler M, Carter CW, Wills PR. AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases. IUBMB Life 2024; 76:1091-1105. [PMID: 39247978 PMCID: PMC11580382 DOI: 10.1002/iub.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| | - Haissi Cui
- Department of ChemistryUniversity of TorontoCanada
| | - John J. Perona
- Department of ChemistryPortland State UniversityPortlandOregonUSA
| | - Oscar Vargas‐Rodriguez
- Department of Molecular Biology and BiophysicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Lluís Ribas de Pouplana
- Institute for Research in BiomedicineThe Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Xiang‐Lei Yang
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Michael Ibba
- Biological SciencesChapman UniversityOrangeCaliforniaUSA
| | - Hubert Becker
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Marie Sissler
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Charles W. Carter
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Peter R. Wills
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| |
Collapse
|
2
|
Akatsu Y, Mutsuro-Aoki H, Tamura K. Development of Allosteric Ribozymes for ATP and l-Histidine Based on the R3C Ligase Ribozyme. Life (Basel) 2024; 14:520. [PMID: 38672790 PMCID: PMC11051094 DOI: 10.3390/life14040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
During the evolution of the RNA, short RNAs are thought to have joined together to form long RNAs, enhancing their function as ribozymes. Previously, the artificial R3C ligase ribozyme (73 nucleotides) was successfully reduced to 46 nucleotides; however, its activity decreased significantly. Therefore, we aimed to develop allosteric ribozymes, whose activities could be regulated by effector compounds, based on the reduced R3C ligase ribozyme (R3C-A). Among the variants prepared by fusing an ATP-binding aptamer RNA with R3C-A, one mutant showed increased ligation activity in an ATP-dependent manner. Melting temperature measurements of the two RNA mutants suggested that the region around the aptamer site was stabilized by the addition of ATP. This resulted in a suitable conformation for the reaction at the ligation site. Another ribozyme was prepared by fusing R3C-A with a l-histidine-binding aptamer RNA, and the ligase activity increased with increasing l-histidine concentrations. Both ATP and l-histidine play prominent roles in current molecular biology and the interaction of RNAs and these molecules could be a key step in the evolution of the world of RNAs. Our results suggest promise in the development of general allosteric ribozymes that are independent of the type of effector molecule and provide important clues to the evolution of the RNA world.
Collapse
Affiliation(s)
- Yuna Akatsu
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (Y.A.); (H.M.-A.)
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (Y.A.); (H.M.-A.)
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (Y.A.); (H.M.-A.)
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Onoguchi M, Otsuka R, Koyama M, Ando T, Mutsuro-Aoki H, Umehara T, Tamura K. Elucidation of productive alanine recognition mechanism by Escherichia coli alanyl-tRNA synthetase. Biosystems 2024; 237:105152. [PMID: 38346553 DOI: 10.1016/j.biosystems.2024.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Alanyl-tRNA synthetase (AlaRS) incorrectly recognizes both a slightly smaller glycine and a slightly larger serine in addition to alanine, and the probability of incorrect identification is extremely low at 1/300 and 1/170, respectively. Alanine is the second smallest amino acid after glycine; however, the mechanism by which AlaRS specifically identifies small differences in side chains with high accuracy remains unknown. In this study, using a malachite green assay, we aimed to elucidate the alanine recognition mechanism of a fragment (AlaRS368N) containing only the amino acid activation domain of Escherichia coli AlaRS. This method quantifies monophosphate by decomposing pyrophosphate generated during aminoacyl-AMP production. AlaRS368N produced far more pyrophosphate when glycine or serine was used as a substrate than when alanine was used. Among several mutants tested, an AlaRS mutant in which the widely conserved aspartic acid at the 235th position (D235) near the active center was replaced with glutamic acid (D235E) increased pyrophosphate release for the alanine substrate, compared to that from glycine and serine. These results suggested that D235 is optimal for AlaRS to specifically recognize alanine. Alanylation activities of an RNA minihelix by the mutants of valine at the 214th position (V214) of another fragment (AlaRS442N), which is the smallest AlaRS with alanine charging activity, suggest the existence of the van der Waals-like interaction between the side chain of V214 and the methyl group of the alanine substrate.
Collapse
Affiliation(s)
- Mayu Onoguchi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Riku Otsuka
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Miki Koyama
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
4
|
Alvarez‐Carreño C, Arciniega M, Ribas de Pouplana L, Petrov AS, Hernández‐González A, Dimas‐Torres J, Valencia‐Sánchez MI, Williams LD, Torres‐Larios A. Common evolutionary origins of the bacterial glycyl tRNA synthetase and alanyl tRNA synthetase. Protein Sci 2023; 33:e4844. [PMID: 38009704 PMCID: PMC10895455 DOI: 10.1002/pro.4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) establish the genetic code. Each aaRS covalently links a given canonical amino acid to a cognate set of tRNA isoacceptors. Glycyl tRNA aminoacylation is unusual in that it is catalyzed by different aaRSs in different lineages of the Tree of Life. We have investigated the phylogenetic distribution and evolutionary history of bacterial glycyl tRNA synthetase (bacGlyRS). This enzyme is found in early diverging bacterial phyla such as Firmicutes, Acidobacteria, and Proteobacteria, but not in archaea or eukarya. We observe relationships between each of six domains of bacGlyRS and six domains of four different RNA-modifying proteins. Component domains of bacGlyRS show common ancestry with (i) the catalytic domain of class II tRNA synthetases; (ii) the HD domain of the bacterial RNase Y; (iii) the body and tail domains of the archaeal CCA-adding enzyme; (iv) the anti-codon binding domain of the arginyl tRNA synthetase; and (v) a previously unrecognized domain that we call ATL (Ancient tRNA latch). The ATL domain has been found thus far only in bacGlyRS and in the universal alanyl tRNA synthetase (uniAlaRS). Further, the catalytic domain of bacGlyRS is more closely related to the catalytic domain of uniAlaRS than to any other aminoacyl tRNA synthetase. The combined results suggest that the ATL and catalytic domains of these two enzymes are ancestral to bacGlyRS and uniAlaRS, which emerged from common protein ancestors by bricolage, stepwise accumulation of protein domains, before the last universal common ancestor of life.
Collapse
Affiliation(s)
- Claudia Alvarez‐Carreño
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Marcelino Arciniega
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Anton S. Petrov
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Adriana Hernández‐González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Jorge‐Uriel Dimas‐Torres
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Marco Igor Valencia‐Sánchez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Present address:
Department of Biochemistry and Molecular PharmacologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Loren Dean Williams
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Alfredo Torres‐Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
5
|
Antika TR, Nazilah KR, Chrestella DJ, Wang TL, Tseng YK, Wang SC, Hsu HL, Wang SW, Chuang TH, Pan HC, Horng JC, Wang CC. Sequence-specific targeting of Caenorhabditis elegans C-Ala to the D-loop of tRNA Ala. J Biol Chem 2023; 299:105149. [PMID: 37567477 PMCID: PMC10485164 DOI: 10.1016/j.jbc.2023.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Alanyl-tRNA synthetase retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Alac) robustly binds both ligands. How Ce-C-Alac targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively. Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala robustly bound both tRNAAla and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNAAla.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | | | - Tzu-Ling Wang
- Graduate Institute of Mathematics and Science Education, National Tsing Hua University, Hsinchu City, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Taoyuan, Taiwan
| | - Sun-Chong Wang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shao-Win Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Antika TR, Chrestella DJ, Tseng YK, Yeh YH, Hsiao CD, Wang CC. A naturally occurring mini-alanyl-tRNA synthetase. Commun Biol 2023; 6:314. [PMID: 36959394 PMCID: PMC10036535 DOI: 10.1038/s42003-023-04699-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout its biology, consisting of catalytic, tRNA-recognition, editing, and C-Ala domains. The catalytic and tRNA-recognition domains catalyze aminoacylation, the editing domain hydrolyzes mischarged tRNAAla, and C-Ala-the major tRNA-binding module-targets the elbow of the L-shaped tRNAAla. Interestingly, a mini-AlaRS lacking the editing and C-Ala domains is recovered from the Tupanvirus of the amoeba Acanthamoeba castellanii. Here we show that Tupanvirus AlaRS (TuAlaRS) is phylogenetically related to its host's AlaRS. Despite lacking the conserved amino acid residues responsible for recognition of the identity element of tRNAAla (G3:U70), TuAlaRS still specifically recognized G3:U70-containing tRNAAla. In addition, despite lacking C-Ala, TuAlaRS robustly binds and charges microAla (an RNA substrate corresponding to the acceptor stem of tRNAAla) as well as tRNAAla, indicating that TuAlaRS exclusively targets the acceptor stem. Moreover, this mini-AlaRS could functionally substitute for yeast AlaRS in vivo. This study suggests that TuAlaRS has developed a new tRNA-binding mode to compensate for the loss of C-Ala.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan, 320317, Taiwan
| | - Dea Jolie Chrestella
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan, 320317, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Zhongli District, Taoyuan, 320317, Taiwan
| | - Yi-Hung Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang District, Taipei, 11529, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang District, Taipei, 11529, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan, 320317, Taiwan.
| |
Collapse
|
7
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
8
|
Guo X, Su M. The Origin of Translation: Bridging the Nucleotides and Peptides. Int J Mol Sci 2022; 24:ijms24010197. [PMID: 36613641 PMCID: PMC9820756 DOI: 10.3390/ijms24010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
Collapse
Affiliation(s)
- Xuyuan Guo
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40 Dublin, Ireland
| | - Meng Su
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Correspondence:
| |
Collapse
|
9
|
Peptide Bond Formation between Aminoacyl-Minihelices by a Scaffold Derived from the Peptidyl Transferase Center. Life (Basel) 2022; 12:life12040573. [PMID: 35455064 PMCID: PMC9030986 DOI: 10.3390/life12040573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
The peptidyl transferase center (PTC) in the ribosome is composed of two symmetrically arranged tRNA-like units that contribute to peptide bond formation. We prepared units of the PTC components with putative tRNA-like structure and attempted to obtain peptide bond formation between aminoacyl-minihelices (primordial tRNAs, the structures composed of a coaxial stack of the acceptor stem on the T-stem of tRNA). One of the components of the PTC, P1c2UGGU (74-mer), formed a dimer and a peptide bond was formed between two aminoacyl-minihelices tethered by the dimeric P1c2UGGU. Peptide synthesis depended on both the existence of the dimeric P1c2UGGU and the sequence complementarity between the ACCA-3′ sequence of the minihelix. Thus, the tRNA-like structures derived from the PTC could have originated as a scaffold of aminoacyl-minihelices for peptide bond formation through an interaction of the CCA sequence of minihelices. Moreover, with the same origin, some would have evolved to constitute the present PTC of the ribosome, and others to function as present tRNAs.
Collapse
|
10
|
Antika TR, Chrestella DJ, Ivanesthi IR, Rida G, Chen KY, Liu FG, Lee YC, Chen YW, Tseng YK, Wang CC. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2190-2200. [PMID: 35100402 PMCID: PMC8887476 DOI: 10.1093/nar/gkac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
Unlike many other aminoacyl-tRNA synthetases, alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout biology. While Caenorhabditis elegans cytoplasmic AlaRS (CeAlaRSc) retains the prototype structure, its mitochondrial counterpart (CeAlaRSm) contains only a residual C-terminal domain (C-Ala). We demonstrated herein that the C-Ala domain from CeAlaRSc robustly binds both tRNA and DNA. It bound different tRNAs but preferred tRNAAla. Deletion of this domain from CeAlaRSc sharply reduced its aminoacylation activity, while fusion of this domain to CeAlaRSm selectively and distinctly enhanced its aminoacylation activity toward the elbow-containing (or L-shaped) tRNAAla. Phylogenetic analysis showed that CeAlaRSm once possessed the C-Ala domain but later lost most of it during evolution, perhaps in response to the deletion of the T-arm (part of the elbow) from its cognate tRNA. This study underscores the evolutionary gain of C-Ala for docking AlaRS to the L-shaped tRNAAla.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Dea Jolie Chrestella
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Indira Rizqita Ivanesthi
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Gita Riswana Nawung Rida
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Kuan-Yu Chen
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Fu-Guo Liu
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Beitou District, Taipei 11217, Taiwan
| | - Yu-Wei Chen
- Department of Neurology, Landseed International Hospital, Pingzhen District, Taoyuan 32449, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Zhongli District, Taoyuan 32001, Taiwan
| | - Chien-Chia Wang
- To whom correspondence should be addressed. Tel: +886 3 426 0840; Fax: +886 3 422 8482;
| |
Collapse
|
11
|
Horikoshi T, Noguchi H, Umehara T, Mutsuro-Aoki H, Kurihara R, Noguchi R, Hashimoto T, Watanabe Y, Ando T, Kamata K, Park SY, Tamura K. Crystal structure of Nanoarchaeum equitans tyrosyl-tRNA synthetase and its aminoacylation activity toward tRNA Tyr with an extra guanosine residue at the 5'-terminus. Biochem Biophys Res Commun 2021; 575:90-95. [PMID: 34461441 DOI: 10.1016/j.bbrc.2021.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
tRNATyr of Nanoarchaeum equitans has a remarkable feature with an extra guanosine residue at the 5'-terminus. However, the N. equitans tRNATyr mutant without extra guanosine at the 5'-end was tyrosylated by tyrosyl-tRNA synthase (TyrRS). We solved the crystal structure of N. equitans TyrRS at 2.80 Å resolution. By comparing the present solved structure with the complex structures TyrRS with tRNATyr of Thermus thermophilus and Methanocaldococcus jannaschii, an arginine substitution mutant of N. equitans TyrRS at Ile200 (I200R), which is the putative closest candidate to the 5'-phosphate of C1 of N. equitans tRNATyr, was prepared. The I200R mutant tyrosylated not only wild-type tRNATyr but also the tRNA without the G-1 residue. Further tyrosylation analysis revealed that the second base of the anticodon (U35), discriminator base (A73), and C1:G72 base pair are strong recognition sites.
Collapse
Affiliation(s)
- Tatsuya Horikoshi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroki Noguchi
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ryodai Kurihara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ryohei Noguchi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takahiro Hashimoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Watanabe
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenichi Kamata
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
12
|
Amino acid activation analysis of primitive aminoacyl-tRNA synthetases encoded by both strands of a single gene using the malachite green assay. Biosystems 2021; 208:104481. [PMID: 34245865 DOI: 10.1016/j.biosystems.2021.104481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Rodin-Ohno hypothesis postulates that two classes of aminoacyl-tRNA synthetases were encoded complementary to double-stranded DNA. Particularly, Geobacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS, belonging to class I) and Escherichia coli histidyl-tRNA synthetase (HisRS, belonging to class II) show high complementarity of the middle base of the codons in the mRNA sequence encoding each ATP binding site. Here, for the reported 46-residue peptides designed from the three-dimensional structures of TrpRS and HisRS, amino acid activation analysis was performed using the malachite green assay, which detects the pyrophosphate departing from ATP in the forward reaction of the first step of tRNA aminoacylation. A maltose-binding protein fusion with the 46 residues of TrpRS (TrpRS46mer) exhibited high activation capacity for several amino acids in the presence of ATP and amino acids, but the activity of an alanine substitution mutant of the first histidine in the HIGH motif (TrpRS46merH15A) was largely reduced. In contrast, pyrophosphate release by HisRS46mer in the histidine activation step was lower than that in the case of TrpRS46mer. Both HisRS46mer and the alanine mutant at the 113th arginine (HisRS46merR113A) showed slightly higher levels of pyrophosphate release than the maltose-binding protein alone. These results do not rule out the Rodin-Ohno hypothesis, but may suggest the necessity of establishing unique evolutionary models from different perspectives.
Collapse
|
13
|
Mutsuro-Aoki H, Hamachi K, Kurihara R, Tamura K. Aminoacylation of short hairpin RNAs through kissing-loop interactions indicates evolutionary trend of RNA molecules. Biosystems 2020; 197:104206. [PMID: 32640271 DOI: 10.1016/j.biosystems.2020.104206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
The unique G3:U70 base pair in the acceptor stem of tRNAAla has been shown to be a critical recognition site by alanyl-tRNA synthetase (AlaRS). The base pair resides on one of the arms of the L-shaped structure of tRNA (minihelix) and the genetic code has likely evolved from a primordial tRNA-aaRS (aminoacyl-tRNA synthetase) system. In terms of the evolution of tRNA, incorporation of a G:U base pair in the structure would be important. Here, we found that two independent short hairpin RNAs change their conformation through kissing-loop interactions, finally forming a minihelix-like structure, in which the G3:U70 base pair is incorporated. The RNA system can be properly aminoacylated by the minimal Escherichia coli AlaRS variant with alanylation activity (AlaRS442N). Thus, characteristic structural features produced via kissing-loop interactions may provide important clues into the evolution of RNA.
Collapse
Affiliation(s)
- Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kokoro Hamachi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ryodai Kurihara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|