1
|
Hocq R, Horvath J, Stumptner M, Malevičius M, Thallinger GG, Pflügl S. A megatransposon drives the adaptation of Thermoanaerobacter kivui to carbon monoxide. Nat Commun 2025; 16:4217. [PMID: 40328730 PMCID: PMC12056078 DOI: 10.1038/s41467-025-59103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Acetogens are promising industrial biocatalysts for upgrading syngas, a gas mixture containing CO, H2 and CO2 into fuels and chemicals. However, CO severely inhibits growth of many acetogens, often requiring extensive adaptation to enable efficient CO conversion (carboxydotrophy). Here, we adapt the thermophilic acetogen Thermoanaerobacter kivui to use CO as sole carbon and energy source. Isolate CO-1 exhibits rapid growth on CO and syngas (co-utilizing CO, H2 and CO2) in batch and continuous cultures (µmax ~ 0.25 h-1). The carboxydotrophic phenotype is attributed to the mobilization of a CO-dependent megatransposon originating from the locus responsible for autotrophy in T. kivui. Transcriptomics reveal the crucial role the redox balance plays during carboxydotrophic growth. These insights are exploited to rationally engineer T. kivui to grow on CO. Collectively, our work elucidates a primary mechanism responsible for the acquisition of carboxydotrophy in acetogens and showcases how transposons can orchestrate evolution.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Circe Biotechnologie GmbH, Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Maja Stumptner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Mykolas Malevičius
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
2
|
Hu XP, Brahmantio B, Bartoszek K, Lercher MJ. Most bacterial gene families are biased toward specific chromosomal positions. Science 2025; 388:186-191. [PMID: 40208975 DOI: 10.1126/science.adm9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/12/2025]
Abstract
The arrangement of genes along bacterial chromosomes influences their expression through growth rate-dependent gene copy number changes during DNA replication. Although translation- and transcription-related genes often cluster near the origin of replication, the extent of positional biases across gene families remains unclear. We hypothesized that natural selection broadly favors specific chromosomal positions to optimize growth rate-dependent expression. Analyzing 910 bacterial species and proteomics data from Escherichia coli and Bacillus subtilis, we found that about two-thirds of bacterial gene families are positionally biased. Natural selection drives genes mainly toward the origin or terminus of replication, with the strongest selection in fast-growing species. Our findings reveal chromosomal positioning as a fundamental mechanism for coordinating gene expression with growth rate, highlighting evolutionary constraints on bacterial genome architecture.
Collapse
Affiliation(s)
- Xiao-Pan Hu
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Bayu Brahmantio
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Blázquez B, Nogales J. Rational Design Assisted by Evolutionary Engineering Allows (De)Construction and Optimization of Complex Phenotypes in Pseudomonas putida KT2440. Microb Biotechnol 2025; 18:e70132. [PMID: 40126873 PMCID: PMC11932161 DOI: 10.1111/1751-7915.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Beyond the rational construction of genetic determinants to encode target functions, complex phenotype engineering requires the contextualisation of their expression within the metabolic and genetic background of the host strain. Furthermore, wherever metabolic complexity is involved, phenotype engineering demands standard, reliable, plug-and-play tools. We introduce GENIO (GENome Integration and fitness Optimization platform for Pseudomonas putida), a framework to optimise genetic circuit performance by means of (i) chromosome-location-based differential gene expression and (ii) subsequent fitness improvement through evolutionary engineering if needed. Using gene expression strength and cell-to-cell variation, we characterised 10 P. putida chromosomal loci (ppLPS) to show that genome context rather than distance to ORI is the main factor driving differential expression performance. We further contextualised ppLPS gene expression against well-known chromosomal integration sites and plasmids displaying different copy numbers. GENIO supports comprehensive exploration of the gene expression space across P. putida's genome while unlocking performance optimization of complex heterologous metabolic pathways through evolutionary engineering. To demonstrate the usability of GENIO, we restored P. putida's aromatic hydrocarbon metabolism by (de)constructing the toluene/m-xylene catabolic pathway coded in the pWW0 plasmid. We also showed that engineering complex phenotypes requires accurate contextualisation of the synthetic pathways involved, a process that benefits from biological robustness.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Systems BiologyCentro Nacional de Biotecnología CSICMadridSpain
- CNB DNA Biofoundry (CNBio), CSICMadridSpain
| | - Juan Nogales
- Department of Systems BiologyCentro Nacional de Biotecnología CSICMadridSpain
- CNB DNA Biofoundry (CNBio), CSICMadridSpain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
4
|
Stefanic P, Stare E, Floccari VA, Kovac J, Hertel R, Rocha U, Kovács ÁT, Mandić-Mulec I, Strube ML, Dragoš A. Ecology of prophage-like elements in Bacillus subtilis at global and local geographical scales. Cell Rep 2025; 44:115197. [PMID: 39798088 DOI: 10.1016/j.celrep.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/27/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
Prophages constitute a substantial portion of bacterial genomes, yet their effects on hosts remain poorly understood. We examine the abundance, distribution, and activity of prophages in Bacillus subtilis using computational and laboratory analyses. Genome sequences from the NCBI database and riverbank soil isolates reveal prophages primarily related to mobile genetic elements in laboratory strains. Distinct and previously unknown prophages in local isolates prompt an investigation into factors shaping prophage presence, with phylogenetic relatedness predicting the prophage repertoire slightly better than geographical origin. Data also show that prophages exhibit strong co-occurrence and exclusion patterns within genomes. Laboratory experiments indicate that most predicted prophages are cryptic, as they are not induced under DNA-damaging conditions. Importantly, stress responses increase with the number of predicted prophages, suggesting their influence on host physiology. This study highlights the diversity, integration patterns, and potential roles of prophages in B. subtilis, shedding light on bacterial genome evolution and phage-host dynamics.
Collapse
Affiliation(s)
- Polonca Stefanic
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Eva Stare
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Valentina A Floccari
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jasna Kovac
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert Hertel
- Department of Genomic and Applied Microbiology, Georg-August-University of Göttingen, 37077 Göttingen, Germany
| | - Ulisses Rocha
- Department of Applied Microbial Ecology, Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Ákos T Kovács
- Institute of Biology, Leiden University, 2333 Leiden, the Netherlands; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ines Mandić-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Zhang Z, Huo J, Velo J, Zhou H, Flaherty A, Saier MH. Comprehensive Characterization of fucAO Operon Activation in Escherichia coli. Int J Mol Sci 2024; 25:3946. [PMID: 38612757 PMCID: PMC11011485 DOI: 10.3390/ijms25073946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| | | | | | | | | | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| |
Collapse
|
6
|
Chamberlain AR, Huynh L, Huang W, Taylor DJ, Harris ME. The specificity landscape of bacterial ribonuclease P. J Biol Chem 2024; 300:105498. [PMID: 38013087 PMCID: PMC10731613 DOI: 10.1016/j.jbc.2023.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Developing quantitative models of substrate specificity for RNA processing enzymes is a key step toward understanding their biology and guiding applications in biotechnology and biomedicine. Optimally, models to predict relative rate constants for alternative substrates should integrate an understanding of structures of the enzyme bound to "fast" and "slow" substrates, large datasets of rate constants for alternative substrates, and transcriptomic data identifying in vivo processing sites. Such data are either available or emerging for bacterial ribonucleoprotein RNase P a widespread and essential tRNA 5' processing endonuclease, thus making it a valuable model system for investigating principles of biological specificity. Indeed, the well-established structure and kinetics of bacterial RNase P enabled the development of high throughput measurements of rate constants for tRNA variants and provided the necessary framework for quantitative specificity modeling. Several studies document the importance of conformational changes in the precursor tRNA substrate as well as the RNA and protein subunits of bacterial RNase P during binding, although the functional roles and dynamics are still being resolved. Recently, results from cryo-EM studies of E. coli RNase P with alternative precursor tRNAs are revealing prospective mechanistic relationships between conformational changes and substrate specificity. Yet, extensive uncharted territory remains, including leveraging these advances for drug discovery, achieving a complete accounting of RNase P substrates, and understanding how the cellular context contributes to RNA processing specificity in vivo.
Collapse
Affiliation(s)
| | - Loc Huynh
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
7
|
Georjon H, Tesson F, Shomar H, Bernheim A. Genomic characterization of the antiviral arsenal of Actinobacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001374. [PMID: 37531269 PMCID: PMC10482375 DOI: 10.1099/mic.0.001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Phages are ubiquitous in nature, and bacteria with very different genomics, metabolisms, and lifestyles are subjected to their predation. Yet, the defence systems that allow bacteria to resist their phages have rarely been explored experimentally outside a very limited number of model organisms. Actinobacteria (Actinomycetota) are a phylum of GC-rich Gram-positive bacteria, which often produce an important diversity of secondary metabolites. Despite being ubiquitous in a wide range of environments, from soil to fresh and sea water but also the gut microbiome, relatively little is known about the anti-phage arsenal of Actinobacteria. In this work, we used DefenseFinder to systematically detect 131 anti-phage defence systems in 22803 fully sequenced prokaryotic genomes, among which are 2253 Actinobacteria of more than 700 species. We show that, like other bacteria, Actinobacteria encode many diverse anti-phage systems that are often encoded on mobile genetic elements. We further demonstrate that most detected defence systems are absent or rarer in Actinobacteria than in other bacteria, while a few rare systems are enriched (notably gp29-gp30 and Wadjet). We characterize the spatial distribution of anti-phage systems on Streptomyces chromosomes and show that some defence systems (e.g. RM systems) tend to be encoded in the core region, while others (e.g. Lamassu and Wadjet) are enriched towards the extremities. Overall, our results suggest that Actinobacteria might be a source of novel anti-phage systems and provide clues to characterize mechanistic aspects of known anti-phage systems.
Collapse
Affiliation(s)
- Héloïse Georjon
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, Inserm U1284, Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, Inserm U1284, Paris, France
- UMR 1137, IAME, Université de Paris, INSERM, Paris, France
| | - Helena Shomar
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, Inserm U1284, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, Inserm U1284, Paris, France
| |
Collapse
|
8
|
Comparative Genome Analysis of Enterococcus cecorum Reveals Intercontinental Spread of a Lineage of Clinical Poultry Isolates. mSphere 2023; 8:e0049522. [PMID: 36794931 PMCID: PMC10117131 DOI: 10.1128/msphere.00495-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.
Collapse
|
9
|
Transcriptome Dynamics of Pseudomonas aeruginosa during Transition from Overlapping To Non-Overlapping Cell Cycles. mSystems 2023; 8:e0113022. [PMID: 36786632 PMCID: PMC10134858 DOI: 10.1128/msystems.01130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Bacteria either duplicate their chromosome once per cell division or a new round of replication is initiated before the cells divide, thus cell cycles overlap. Here, we show that the opportunistic pathogen Pseudomonas aeruginosa switches from fast growth with overlapping cell cycles to sustained slow growth with only one replication round per cell division when cultivated under standard laboratory conditions. The transition was characterized by fast-paced, sequential changes in transcriptional activity along the ori-ter axis of the chromosome reflecting adaptation to the metabolic needs during both growth phases. Quorum sensing (QS) activity was highest at the onset of the slow growth phase with non-overlapping cell cycles. RNA sequencing of subpopulations of these cultures sorted based on their DNA content, revealed a strong gene dosage effect as well as specific expression patterns for replicating and nonreplicating cells. Expression of flagella and mexE, involved in multidrug efflux was restricted to cells that did not replicate, while those that did showed a high activity of the cell division locus and recombination genes. A possible role of QS in the formation of these subpopulations upon switching to non-overlapping cell cycles could be a subject of further research. IMPORTANCE The coordination of gene expression with the cell cycle has so far been studied only in a few bacteria, the bottleneck being the need for synchronized cultures. Here, we determined replication-associated effects on transcription by comparing Pseudomonas aeruginosa cultures that differ in their growth mode and number of replicating chromosomes. We further show that cell cycle-specific gene regulation can be principally identified by RNA sequencing of subpopulations from cultures that replicate only once per cell division and that are sorted according to their DNA content. Our approach opens the possibility to study asynchronously growing bacteria from a wide phylogenetic range and thereby enhance our understanding of the evolution of cell cycle control on the transcriptional level.
Collapse
|
10
|
Khandelwal R, Srivastava P, Bisaria VS. Expression of Escherichia coli malic enzyme gene in Zymomonas mobilis for production of malic acid. J Biotechnol 2022; 351:23-29. [PMID: 35483474 DOI: 10.1016/j.jbiotec.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Malic acid is one of the organic acids which is used in various industries including food and pharmaceuticals. Biotechnological production of malic acid by an efficient microorganism is highly desirable as the process will be eco-friendly and cost-effective. In this study, malic acid synthesis by Zymomonas mobilis was studied by expressing Escherichia coli malic enzyme gene under Pchap, Ptac and Ppdc promoters. The mae+ recombinants were obtained by recombineering-based genomic integration of Pchap-mae, Ptac-mae and Ppdc-mae sequences. The Ppdc promoter showed the highest expression of malic enzyme and the Pchap the lowest. However, cell growth was limited in mae+ recombinant containing Ppdc promoter. The metabolic analysis showed the highest level of malic acid in Ppdc-mae recombinant (2.84 g/L), which was about eight times higher than that in the wild type strain. The study showed that these three promoters can be used to produce organic acids in Z. mobilis.
Collapse
Affiliation(s)
- Rohit Khandelwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Virendra Swarup Bisaria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Molina-Sánchez MD, García-Rodríguez FM, Andrés-León E, Toro N. Identification of Group II Intron RmInt1 Binding Sites in a Bacterial Genome. Front Mol Biosci 2022; 9:834020. [PMID: 35281263 PMCID: PMC8914252 DOI: 10.3389/fmolb.2022.834020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
RmInt1 is a group II intron encoding a reverse transcriptase protein (IEP) lacking the C-terminal endonuclease domain. RmInt1 is an efficient mobile retroelement that predominantly reverse splices into the transient single-stranded DNA at the template for lagging strand DNA synthesis during host replication, a process facilitated by the interaction of the RmInt1 IEP with DnaN at the replication fork. It has been suggested that group II intron ribonucleoprotein particles bind DNA nonspecifically, and then scan for their correct target site. In this study, we investigated RmInt1 binding sites throughout the Sinorhizobium meliloti genome, by chromatin-immunoprecipitation coupled with next-generation sequencing. We found that RmInt1 binding sites cluster around the bidirectional replication origin of each of the three replicons comprising the S. meliloti genome. Our results provide new evidence linking group II intron mobility to host DNA replication.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
| | - Fernando Manuel García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
- *Correspondence: Nicolás Toro,
| |
Collapse
|
12
|
Lato DF, Zeng Q, Golding GB. Genomic inversions in Escherichia coli alter gene expression and are associated with nucleoid protein binding sites. Genome 2022; 65:287-299. [DOI: 10.1139/gen-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic reorganization, like rearrangements and inversions, influence how genetic information is organized within bacterial genomes. Inversions in particular, facilitate genome evolution through gene gain and loss, and can alter gene expression. Previous studies investigating the impact inversions have on gene expression induced inversions targeting specific genes or examine inversions between distantly related species. This fails to encompass a genome wide perspective on naturally occurring inversions and their post adaptation impact on gene expression. Here we use bioinformatic techniques and multiple RNA-seq datasets to investigate the short- and long-range impact inversions have on genomic gene expression within <i>Escherichia coli</i>. We observed differences in gene expression between homologous inverted and non-inverted genes, even after long term exposure to adaptive selection. In 4% of inversions representing 33 genes, differential gene expression between inverted and non-inverted homologs was detected, with nearly two thirds (71%) of differentially expressed inverted genes having 9.4-85.6 fold higher gene expression. The identified inversions had more overlap than expected with nucleoid associated protein binding sites, which assist in genomic gene expression regulation. Some inversions can drastically impact gene expression even between different strains of <i>E.coli</i>, and could provide a mechanism for the diversification of genetic content through controlled expression changes.
Collapse
Affiliation(s)
| | - Qing Zeng
- McMaster University, Department of Biology, Hamilton, Ontario, Canada,
| | - G. Brian Golding
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1,
| |
Collapse
|
13
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
14
|
Sonnenberg CB, Haugen P. The Pseudoalteromonas multipartite genome: distribution and expression of pangene categories, and a hypothesis for the origin and evolution of the chromid. G3-GENES GENOMES GENETICS 2021; 11:6325023. [PMID: 34544144 PMCID: PMC8496264 DOI: 10.1093/g3journal/jkab256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022]
Abstract
Bacterial genomes typically consist of one large chromosome, but can also include secondary replicons. These so-called multipartite genomes are scattered on the bacterial tree of life with the majority of cases belonging to Proteobacteria. Within the class gamma-proteobacteria, multipartite genomes are restricted to the two families Vibrionaceae and Pseudoalteromonadaceae. Whereas the genome of vibrios is well studied, information on the Pseudoalteromonadaceae genome is much scarcer. We have studied Pseudoalteromonadaceae with respect to the origin of the chromid, how pangene categories are distributed, how genes are expressed relative to their genomic location, and identified chromid hallmark genes. We calculated the Pseudoalteromonadaceae pangenome based on 25 complete genomes and found that core/softcore are significantly overrepresented in late replicating sectors of the chromid, regardless of how the chromid is replicated. On the chromosome, core/softcore and shell/cloud genes are only weakly overrepresented at the chromosomal replication origin and termination sequences, respectively. Gene expression is trending downwards with increasing distance from the chromosomal oriC, whereas the chromidal expression pattern is more complex. Moreover, we identified 78 chromid hallmark genes, and BLASTp searches suggest that the majority of them were acquired from the ancestral gene pool of Alteromonadales. Finally, our data strongly suggest that the chromid originates from a plasmid that was acquired in a relatively recent event. In summary, this study extends our knowledge on multipartite genomes, and helps us understand how and why secondary replicons are acquired, why they are maintained, and how they are shaped by evolution.
Collapse
Affiliation(s)
- Cecilie Bækkedal Sonnenberg
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| |
Collapse
|
15
|
Lato DF, Golding GB. The Location of Substitutions and Bacterial Genome Arrangements. Genome Biol Evol 2020; 13:6035136. [PMID: 33320172 PMCID: PMC7851589 DOI: 10.1093/gbe/evaa260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence supports the notion that different regions of a genome have unique rates of molecular change. This variation is particularly evident in bacterial genomes where previous studies have reported gene expression and essentiality tend to decrease, whereas substitution rates usually increase with increasing distance from the origin of replication. Genomic reorganization such as rearrangements occur frequently in bacteria and allow for the introduction and restructuring of genetic content, creating gradients of molecular traits along genomes. Here, we explore the interplay of these phenomena by mapping substitutions to the genomes of Escherichia coli, Bacillus subtilis, Streptomyces, and Sinorhizobium meliloti, quantifying how many substitutions have occurred at each position in the genome. Preceding work indicates that substitution rate significantly increases with distance from the origin. Using a larger sample size and accounting for genome rearrangements through ancestral reconstruction, our analysis demonstrates that the correlation between the number of substitutions and the distance from the origin of replication is significant but small and inconsistent in direction. Some replicons had a significantly decreasing trend (E. coli and the chromosome of S. meliloti), whereas others showed the opposite significant trend (B. subtilis, Streptomyces, pSymA and pSymB in S. meliloti). dN, dS, and ω were examined across all genes and there was no significant correlation between those values and distance from the origin. This study highlights the impact that genomic rearrangements and location have on molecular trends in some bacteria, illustrating the importance of considering spatial trends in molecular evolutionary analysis. Assuming that molecular trends are exclusively in one direction can be problematic.
Collapse
Affiliation(s)
- Daniella F Lato
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Blanca L, Christo-Foroux E, Rigou S, Legendre M. Comparative Analysis of the Circular and Highly Asymmetrical Marseilleviridae Genomes. Viruses 2020; 12:E1270. [PMID: 33171839 PMCID: PMC7695187 DOI: 10.3390/v12111270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Marseilleviridae members are large dsDNA viruses with icosahedral particles 250 nm in diameter infecting Acanthamoeba. Their 340 to 390 kb genomes encode 450 to 550 protein-coding genes. Since the discovery of marseillevirus (the prototype of the family) in 2009, several strains were isolated from various locations, among which 13 are now fully sequenced. This allows the organization of their genomes to be deciphered through comparative genomics. Here, we first experimentally demonstrate that the Marseilleviridae genomes are circular. We then acknowledge a strong bias in sequence conservation, revealing two distinct genomic regions. One gathers most Marseilleviridae paralogs and has undergone genomic rearrangements, while the other, enriched in core genes, exhibits the opposite pattern. Most of the genes whose protein products compose the viral particles are located in the conserved region. They are also strongly biased toward a late gene expression pattern. We finally discuss the potential advantages of Marseilleviridae having a circular genome, and the possible link between the biased distribution of their genes and the transcription as well as DNA replication mechanisms that remain to be characterized.
Collapse
Affiliation(s)
| | | | | | - Matthieu Legendre
- CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Aix Marseille Univ., 13288 Marseille, France; (L.B.); (E.C.-F.); (S.R.)
| |
Collapse
|