1
|
Sun Y, Sun H, Zhang Z, Tan F, Qu Y, Lei X, Xu Q, Wang J, Shu L, Xiao H, Yang Z, Liu H. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients. Biomed Pharmacother 2024; 179:117333. [PMID: 39243436 DOI: 10.1016/j.biopha.2024.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Kidney stones, a prevalent urological disorder, are closely associated with oxidative stress (OS) and the inflammatory response. Recent research in the field of kidney stone treatment has indicated the potential of natural active ingredients to modulate OS targets and the inflammatory response in kidney stones. Oxidative stress can occur through various pathways, increasing the risk of stone formation, while the inflammatory response generated during kidney stone formation further exacerbates OS, forming a detrimental cycle. Both antioxidant systems related to OS and inflammatory mediators associated with inflammation play roles in the pathogenesis of kidney stones. Natural active ingredients, abundant in resources and possessing antioxidative and anti-inflammatory properties, have the ability to decrease the risk of stone formation and improve prognosis by reducing OS and suppressing pro-inflammatory cytokine expression or pathways. Currently, numerous developed natural active ingredients have been clinically applied and demonstrated satisfactory therapeutic efficacy. This review aims to provide novel insights into OS and inflammation targets in kidney stones as well as summarize research progress on potential therapeutic strategies involving natural active ingredients. Future studies should delve deeper into exploring efficacy and mechanisms of action of diverse natural active ingredients, proposing innovative treatment strategies for kidney stones, and continuously uncovering their potential applications.
Collapse
Affiliation(s)
- Yue Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Hongmei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhengze Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Futing Tan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yunxia Qu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiaojing Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Qingzhu Xu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Jiangtao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Lindan Shu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; National-Local Joint. Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| |
Collapse
|
2
|
Kong J, Kui H, Tian Y, Kong X, He T, Li Q, Gu C, Guo J, Liu C. Nephrotoxicity assessment of podophyllotoxin-induced rats by regulating PI3K/Akt/mTOR-Nrf2/HO1 pathway in view of toxicological evidence chain (TEC) concept. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115392. [PMID: 37651795 DOI: 10.1016/j.ecoenv.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Adverse reactions to traditional Chinese medicine have hindered the healthy development and internationalization process of the traditional Chinese medicine industry. The critical issue that needs to be solved urgently is to evaluate the safety of traditional Chinese medicine systematically and effectively. Podophyllotoxin (PPT) is a highly active compound extracted from plants of the genus Podophyllum such as Dysosma versipellis (DV). However, its high toxicity and toxicity to multiple target organs affect the clinical application, such as the liver and kidney. Based on the concurrent effects of PPT's medicinal activity and toxicity, it would be a good example to conduct a systematic review of its safety. Therefore, this study revolves around the Toxicological Evidence Chain (TEC) concept. Based on PPT as the main toxic constituent in DV, observe the objective toxicity impairment phenotype of animals. Evaluate the serum biochemical indicators and pathological tissue sections for substantial toxic damage results. Using metabolomics, lipidomics, and network toxicology to evaluate the nephrotoxicity of PPT from multiple perspectives systematically. The results showed that PPT-induced nephrotoxicity manifested as renal tubular damage, mainly affecting metabolic pathways such as glycerophospholipid metabolism and sphingolipid metabolism. PPT inhibits the autophagy process of kidney cells through the PI3K/Akt/mTOR and Nrf2/HO1 pathways and induces the activation of oxidative stress in the body, thereby causing nephrotoxic injury. This study fully verified the feasibility of the TEC concept for the safety and toxicity evaluation of traditional Chinese medicine. Provide a research template for systematically evaluating the safety of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiao Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Jinhe Guo
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chuanxin Liu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| |
Collapse
|
3
|
Ushimoto C, Sugiki S, Kunii K, Inoue S, Kuroda E, Akai R, Iwawaki T, Miyazawa K. Dynamic change and preventive role of stress response via Keap1-Nrf2 during renal crystal formation. Free Radic Biol Med 2023; 207:120-132. [PMID: 37451369 DOI: 10.1016/j.freeradbiomed.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Oxidative stress is a major risk factor for calcium oxalate nephrolithiasis. Reports suggest that oxidative stress response is induced in animals and humans with kidney stones. Keap1, Nrf2, and HO-1 are known as oxidative stress mediators. However, the association between oxidative stress response and stone formation is unclear. In this study, we analyzed oxidative stress response from the acute to the crystal formation phase when crystal formation was applied to renal crystal mice model and bioimaging mice and investigated the effect on crystal formation. In renal tissues, after glyoxylate administration, HO-1 increased for up to 6 h and returned to baseline at 24 h. This was observed following each daily dose until five days after the crystallization phase; however, the range of increase was attenuated. The possibility that Nrf2 activity influenced the number of crystals was considered in the experiment. Crystal formation increased in Nrf2-deficient mice and could be reduced by Nrf2 activators. In conclusion, the oxidative stress response via the Keap1-Nrf2 pathway may contribute to crystal formation. Particularly, this pathway may be a prospective target for drug development to prevent and cure nephrolithiasis.
Collapse
Affiliation(s)
- Chiharuko Ushimoto
- Department of Urology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Shigeru Sugiki
- Department of Urology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Kenshirou Kunii
- Department of Urology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Eriko Kuroda
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| |
Collapse
|
4
|
Rosiglitazone Suppresses Renal Crystal Deposition by Ameliorating Tubular Injury Resulted from Oxidative Stress and Inflammatory Response via Promoting the Nrf2/HO-1 Pathway and Shifting Macrophage Polarization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527137. [PMID: 34691355 PMCID: PMC8531781 DOI: 10.1155/2021/5527137] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress and inflammatory response are closely related to nephrolithiasis. This study is aimed at exploring whether rosiglitazone (ROSI), a regulator of macrophage (Mp) polarization, could reduce renal calcium oxalate (CaOx) deposition by ameliorating oxidative stress and inflammatory response. Male C57 mice were equally and randomly divided into 7 groups. Kidney sections were collected on day 5 or day 8 after treatment. Pizzolato staining and polarized light optical microscopy were used to detect crystal deposition. PAS staining and TUNEL assay were performed to assess the tubular injury and cell apoptosis, respectively. Gene expression was assessed by immunohistochemistry, immunofluorescence, ELISA, qRT-PCR, and Western blot. The reactive oxygen species (ROS) level was assessed using a fluorescence microplate and fluorescence microscope. Hydrogen peroxide (H2O2), malonaldehyde (MDA), and glutathione (GSH) were evaluated to determine oxidative stress. Lactic dehydrogenase (LDH) activity was examined to detect cell injury. Adhesion of CaOx monohydrate (COM) crystals to HK-2 cells was detected by crystal adhesion assay. HK-2 cell death or renal macrophage polarization was assessed by flow cytometry. In vivo, renal crystal deposition, tubular injury, crystal adhesion, cell apoptosis, oxidative stress, and inflammatory response were significantly increased in the 7-day glyoxylic acid- (Gly-) treated group but were decreased in the ROSI-treated groups, especially in the groups pretreated with ROSI. Moreover, ROSI significantly reduced renal Mp aggregation and M1Mp polarization but significantly enhanced renal M2Mp polarization. In vitro, ROSI significantly suppressed renal injury, apoptosis, and crystal adhesion of HK-2 cells and markedly shifted COM-stimulated M1Mps to M2Mps, presenting an anti-inflammatory effect. Furthermore, ROSI significantly suppressed oxidative stress by promoting the Nrf2/HO-1 pathway in HK-2 cells. These findings indicate that ROSI could ameliorate renal tubular injury that resulted from oxidative stress and inflammatory response by suppressing M1Mp polarization and promoting M2Mp polarization. Therefore, ROSI is a potential therapeutic and preventive drug for CaOx nephrolithiasis.
Collapse
|
5
|
Liu Q, Liu Y, Guan X, Wu J, He Z, Kang J, Tao Z, Deng Y. Effect of M2 Macrophages on Injury and Apoptosis of Renal Tubular Epithelial Cells Induced by Calcium Oxalate Crystals. Kidney Blood Press Res 2019; 44:777-791. [DOI: 10.1159/000501558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Background: M2 macrophages have important roles in diseases such as tumours, cardiovascular diseases and renal diseases. This study aimed to determine the effects and protective mechanism of M2 macrophages against oxidative stress injury and apoptosis induced by calcium oxalate crystals (CaOx) in renal tubular epithelial cells (HK-2) under coculture conditions. Methods: THP-1 cells were induced to differentiate into M2 macrophages by using phorbol-12-myristate-13-acetate, IL-4 and IL-13. Morphological features were observed by microscopy. Phenotypic markers were identified by reverse transcription-polymerase chain reaction, Western blot and enzyme-linked immunosorbent assay (ELISA). HK-2 cells were treated with 0.5 mg/mL CaOx crystals and co-cultured with M2 macrophages or apocynin. The viability of HK-2 cells was detected by CCK-8 assay. The lactate dehydrogenase (LDH) activity of HK-2 cells was analysed using a microplate reader. The apoptosis of HK-2 cells was examined by flow cytometry and Hoechst 33258 staining. Reactive oxygen species (ROS) expression and mitochondrial membrane potential in HK-2 cells were detected by a fluorescence microplate reader. Western blot analysis was conducted to detect the expression of p47phox, Bcl-2, cleaved caspase-3, cytochrome c, p38 MAPK, phospho-p38 MAPK, Akt and phospho-Akt. Results: The results of morphology, reverse transcription-polymerase chain reaction, Western blot and ELISA showed that THP-1 cells were successfully polarised to M2 macrophages. The results of co-culture suggested that M2 macrophages or apocynin significantly increased the cell viability and decreased the LDH activity and apoptosis rate after HK-2 cells were challenged with CaOx crystals. The expression of the p47phox protein and the concentration of ROS were reduced, the release of mitochondrial membrane potential and the expression of the Bcl-2 protein were upregulated and the protein expression of cleaved caspase-3 and cytochrome c was downregulated. The expression of the phosphorylated form of p38 MAPK increased. Under coculture conditions with M2 macrophages, the Akt protein of HK-2 cells treated with CaOx crystals was dephosphorylated, but the phosphorylated form of Akt was not reduced by apocynin. Conclusions: M2 macrophages reduced the oxidative stress injury and apoptosis of HK-2 cells by downregulating the activation of NADPH oxidase, reducing the production of ROS, inhibiting the phosphorylation of p38 MAPK and enhancing the phosphorylation of Akt. We have revealed one of the possible mechanisms by which M2 macrophages reduce the formation of kidney stones.
Collapse
|
6
|
Gorvin CM, Loh NY, Stechman MJ, Falcone S, Hannan FM, Ahmad BN, Piret SE, Reed AA, Jeyabalan J, Leo P, Marshall M, Sethi S, Bass P, Roberts I, Sanderson J, Wells S, Hough TA, Bentley L, Christie PT, Simon MM, Mallon AM, Schulz H, Cox RD, Brown MA, Huebner N, Brown SD, Thakker RV. Mice with a Brd4 Mutation Represent a New Model of Nephrocalcinosis. J Bone Miner Res 2019; 34:1324-1335. [PMID: 30830987 PMCID: PMC6658219 DOI: 10.1002/jbmr.3695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
Nephrolithiasis (NL) and nephrocalcinosis (NC), which comprise renal calcification of the collecting system and parenchyma, respectively, have a multifactorial etiology with environmental and genetic determinants and affect ∼10% of adults by age 70 years. Studies of families with hereditary NL and NC have identified >30 causative genes that have increased our understanding of extracellular calcium homeostasis and renal tubular transport of calcium. However, these account for <20% of the likely genes that are involved, and to identify novel genes for renal calcification disorders, we investigated 1745 12-month-old progeny from a male mouse that had been treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for radiological renal opacities. This identified a male mouse with renal calcification that was inherited as an autosomal dominant trait with >80% penetrance in 152 progeny. The calcification consisted of calcium phosphate deposits in the renal papillae and was associated with the presence of the urinary macromolecules osteopontin and Tamm-Horsfall protein, which are features found in Randall's plaques of patients with NC. Genome-wide mapping located the disease locus to a ∼30 Mbp region on chromosome 17A3.3-B3 and whole-exome sequence analysis identified a heterozygous mutation, resulting in a missense substitution (Met149Thr, M149T), in the bromodomain-containing protein 4 (BRD4). The mutant heterozygous (Brd4+/M149T ) mice, when compared with wild-type (Brd4+/+ ) mice, were normocalcemic and normophosphatemic, with normal urinary excretions of calcium and phosphate, and had normal bone turnover markers. BRD4 plays a critical role in histone modification and gene transcription, and cDNA expression profiling, using kidneys from Brd4+/M149T and Brd4+/+ mice, revealed differential expression of genes involved in vitamin D metabolism, cell differentiation, and apoptosis. Kidneys from Brd4+/M149T mice also had increased apoptosis at sites of calcification within the renal papillae. Thus, our studies have established a mouse model, due to a Brd4 Met149Thr mutation, for inherited NC. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nellie Y Loh
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J Stechman
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Falcone
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Bushra N Ahmad
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita Ac Reed
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Siddharth Sethi
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Paul Bass
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Ian Roberts
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Jeremy Sanderson
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Liz Bentley
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Paul T Christie
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle M Simon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Ann-Marie Mallon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | | | - Steve D Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Tsai JL, Tsai SF. Calcium oxalate crystal related kidney injury in a patient receiving Roux-en Y hepaticojejunostomy due to gall bladder cancer. BMC Nephrol 2017; 18:106. [PMID: 28356078 PMCID: PMC5372328 DOI: 10.1186/s12882-017-0520-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/22/2017] [Indexed: 11/24/2022] Open
Abstract
Background Calcium oxalate nephropathy is rare in current practice. It was a common complication during jejunoileal bypass, but much less seen in modern gastric bypass surgery for morbid obesity. The major cause of it is enteric hyperoxaluria. Case presentation We report on a patient here with acute kidney disease due to calcium oxalate nephropathy, rather than the conditions mentioned above. The male patient received a Roux-en Y hepaticojejunostomy and common bile duct drainage. In addition to enteric hyperoxaluria, chronic kidney disease related metabolic acidosis, chronic diarrhea related volume depletion, a high oxalate and low potassium diet, long term ascorbic acid intake and long term exposure to antibiotics, all predisposed him to having oxalate nephropathy. Conclusion This is the first case with such conditions and we recommend that similarly diagnosed patients avoid all these predisposing factors, in order to avoid this rare disease and its undesired outcome.
Collapse
Affiliation(s)
- Jun-Li Tsai
- Department of Family Medicine, Cheng Ching General Hospital, Taichung, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, Taiwan, 40705, Taiwan, Republic of China. .,Department of Life Science, Tunghai University, Taichung, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
8
|
Vervaet BA, Verhulst A, De Broe ME, D'Haese PC. The tubular epithelium in the initiation and course of intratubular nephrocalcinosis. ACTA ACUST UNITED AC 2010; 38:249-56. [PMID: 20680256 DOI: 10.1007/s00240-010-0290-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/05/2023]
Abstract
Intratubular nephrocalcinosis is defined as the histological observation of calcium oxalate and/or calcium phosphate deposits retained within the lumen of the renal tubules. As the tubular epithelium is the primary interaction partner of crystals formed in the tubular fluid, the role of the epithelial cells in nephrocalcinosis has been investigated intensively. This review summarizes our current understanding on how the tubular epithelium mechanistically appears to be involved both in the initiation and in the course of nephrocalcinosis, with emphasis on in vivo observations.
Collapse
Affiliation(s)
- Benjamin A Vervaet
- Laboratory of Pathophysiology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | | | |
Collapse
|