1
|
da Paz CA, Eiró-Quirino L, de Araújo DB, Hartcopff PFP, Dos Santos MF, da Cunha Ferreira R, da Silva Deiga Y, de Sousa Barbosa A, de Souza LV, Hamoy MKO, Barbosa GB, do Prado AF, Rodrigues KE, Barbas LAL, Muto NA, Hamoy M. Methylmercury causes changes in the cardiac activity of an Amazonian fish (Colossoma macropomum): an electrocardiographic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36524-y. [PMID: 40493348 DOI: 10.1007/s11356-025-36524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 05/07/2025] [Indexed: 06/12/2025]
Abstract
Pollution from gold mining has been a major problem in the Amazon River basin. Mercury in its main organic form, methylmercury (MeHg), is potentially toxic to fish, which are mainly affected by inadequate disposal of this pollutant. The present study aimed to evaluate the cardiac graphoelements over the 1-h exposure of Colossoma macropomum to an immersion bath using different concentrations of MeHg. For that purpose, 45 fish were used, assayed into four groups according to the following concentrations: 10 µg/ml, 20 µg/ml, 30 µg/ml and 40 µg/ml MeHg (n = 9). Exposure to different concentrations of MeHg demonstrated the triggering of arrhythmia over the time, and higher concentrations (30 and 40 µg/ml) had deleterious cardiac effects, with atrioventricular block. Such effects became more severe depending on the length of the exposure time to MeHg, demonstrating the susceptibility of tambaqui fish C. macropomum to this intoxication.
Collapse
Affiliation(s)
| | - Luciana Eiró-Quirino
- Laboratory of Pharmacology and Natural Products Toxicology, ICB/UFPA, Belém, PA, Brazil.
| | | | | | | | | | - Yris da Silva Deiga
- Laboratory of Pharmacology and Natural Products Toxicology, ICB/UFPA, Belém, PA, Brazil
| | | | | | | | | | | | | | - Luis André Luz Barbas
- Tropical Species Aquaculture Laboratory (LAET), Federal Institute of Education, Science, and Technology of Pará - Castanhal Campus/IFPA, Castanhal, PA, Brazil
| | - Nilton Akio Muto
- Centre for Valorization of Amazonian Bioactive Compounds, ICB/UFPA, Belém, PA, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Natural Products Toxicology, ICB/UFPA, Belém, PA, Brazil
| |
Collapse
|
2
|
Crespo-Lopez ME, Barthelemy JL, Lopes-Araújo A, Santos-Sacramento L, Leal-Nazaré CG, Soares-Silva I, Macchi BM, do Nascimento JLM, Arrifano GDP, Augusto-Oliveira M. Revisiting Genetic Influence on Mercury Exposure and Intoxication in Humans: A Scoping Review. TOXICS 2023; 11:967. [PMID: 38133368 PMCID: PMC10747380 DOI: 10.3390/toxics11120967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Human intoxication to mercury is a worldwide health problem. In addition to the type and length of exposure, the genetic background plays an important role in mercury poisoning. However, reviews on the genetic influence in mercury toxicity are scarce and not systematic. Therefore, this review aimed to systematically overview the most recent evidence on the genetic influence (using single nucleotide polymorphisms, SNPs) on human mercury poisoning. Three different databases (PubMed/Medline, Web of Science and Scopus) were searched, and 380 studies were found that were published from 2015 to 2022. After applying inclusion/exclusion criteria, 29 studies were selected and data on characteristics (year, country, profile of participants) and results (mercury biomarkers and quantitation, SNPs, main findings) were extracted and analyzed. The largest number of studies was performed in Brazil, mainly involving traditional populations of the Tapajós River basin. Most studies evaluated the influence of the SNPs related to genes of the glutathione system (GST, GPx, etc.), the ATP-binding cassette transporters and the metallothionein proteins. The recent findings regarding other SNPs, such as those of apolipoprotein E and brain-derived neurotrophic factor genes, are also highlighted. The importance of the exposure level is discussed considering the possible biphasic behavior of the genetic modulation phenomena that could explain some SNP associations. Overall, recommendations are provided for future studies based on the analysis obtained in this scoping review.
Collapse
Affiliation(s)
- Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Barbarella M. Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (J.L.M.d.N.)
| | - José Luiz M. do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (J.L.M.d.N.)
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| |
Collapse
|
3
|
Bello KAS, Wilke MCB, Simões RP, Landim-Vieira M, Langa P, Stefanon I, Vassallo DV, Fernandes AA. Chronic exposure to mercury increases arrhythmia and mortality post-acute myocardial infarction in rats. Front Physiol 2023; 14:1260509. [PMID: 37929206 PMCID: PMC10622797 DOI: 10.3389/fphys.2023.1260509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Mercury (Hg) is a heavy metal that causes a variety of toxic effects in eukaryotic cells. Previous studies have reported detrimental effects of mercury toxicity in the cardiovascular system. Given the importance of understanding the relationship between Hg and cardiovascular disease, we sought to investigate if the Hg could worsen the myocardial repercussions following ischemic injury. We demonstrated that once mercury toxicity is established, it can influence the outcome of myocardial infarction (MI). Methods: Male Wistar rats received intramuscular injections of either saline (NaCl 0.9%) or mercuric chloride (HgCl2, first dose of 4.6 μg/kg, and subsequent doses of 0.07 μg/kg/day) for 4 weeks. Three weeks post-exposure, we induced transmural infarction in the left ventricle free wall through coronary artery occlusion surgery. Results: ECG recordings obtained from MI groups demonstrated alterations in the rhythm of the heartbeat/heart electrical activity, as expected, including ventricular extrasystoles and ventricular tachycardia. However, the MI group exposed to Hg (MI-Hg) exhibited augmented ventricular extrasystoles and ventricular tachycardia compared to the MI group. Also, Basckó coefficient revealed that the arrhythmic events-after MI-were aggravated by Hg exposure. Discussion: Our results indicate that the significantly increased mortality in MI-Hg groups when compared to MI (21%, MI vs 32%, MI-Hg) is correlated with greater occurrence of arrhythmias. In conclusion, this study further supports the idea that exposure to mercury (Hg) should be recognized as a significant risk factor that exacerbates the impact of cardiac ischemic injury, potentially leading to an increased mortality rate among patients experiencing acute MI.
Collapse
Affiliation(s)
- Keren A. S. Bello
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Maria Clara B. Wilke
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Rakel P. Simões
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Paulina Langa
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ivanita Stefanon
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Aurélia Araújo Fernandes
- Department of Physiological Sciences of the Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| |
Collapse
|
4
|
Wuni R, Ventura EF, Curi-Quinto K, Murray C, Nunes R, Lovegrove JA, Penny M, Favara M, Sanchez A, Vimaleswaran KS. Interactions between genetic and lifestyle factors on cardiometabolic disease-related outcomes in Latin American and Caribbean populations: A systematic review. Front Nutr 2023; 10:1067033. [PMID: 36776603 PMCID: PMC9909204 DOI: 10.3389/fnut.2023.1067033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The prevalence of cardiometabolic diseases has increased in Latin American and the Caribbean populations (LACP). To identify gene-lifestyle interactions that modify the risk of cardiometabolic diseases in LACP, a systematic search using 11 search engines was conducted up to May 2022. Methods Eligible studies were observational and interventional studies in either English, Spanish, or Portuguese. A total of 26,171 publications were screened for title and abstract; of these, 101 potential studies were evaluated for eligibility, and 74 articles were included in this study following full-text screening and risk of bias assessment. The Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of Bias In Non-Randomized Studies-of Interventions (ROBINS-I) assessment tool were used to assess the methodological quality and risk of bias of the included studies. Results We identified 122 significant interactions between genetic and lifestyle factors on cardiometabolic traits and the vast majority of studies come from Brazil (29), Mexico (15) and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most studied genes. The results of the gene-lifestyle interactions suggest effects which are population-, gender-, and ethnic-specific. Most of the gene-lifestyle interactions were conducted once, necessitating replication to reinforce these results. Discussion The findings of this review indicate that 27 out of 33 LACP have not conducted gene-lifestyle interaction studies and only five studies have been undertaken in low-socioeconomic settings. Most of the studies were cross-sectional, indicating a need for longitudinal/prospective studies. Future gene-lifestyle interaction studies will need to replicate primary research of already studied genetic variants to enable comparison, and to explore the interactions between genetic and other lifestyle factors such as those conditioned by socioeconomic factors and the built environment. The protocol has been registered on PROSPERO, number CRD42022308488. Systematic review registration https://clinicaltrials.gov, identifier CRD420223 08488.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Eduard F. Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | | | - Claudia Murray
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Richard Nunes
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | - Marta Favara
- Oxford Department of International Development, University of Oxford, Oxford, United Kingdom
| | - Alan Sanchez
- Grupo de Análisis para el Desarrollo (GRADE), Lima, Peru
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, United Kingdom
| |
Collapse
|
5
|
Olivero-Verbel J, Alvarez-Ortega N, Alcala-Orozco M, Caballero-Gallardo K. Population exposure to lead and mercury in Latin America. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Devóz PP, Reis MBD, Gomes WR, Maraslis FT, Ribeiro DL, Antunes LMG, Batista BL, Grotto D, Reis RM, Barbosa F, Barcelos GRM. Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. CHEMOSPHERE 2021; 269:128758. [PMID: 33143897 DOI: 10.1016/j.chemosphere.2020.128758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
It is well known that one of the most outstanding adverse effects related to lead (Pb) exposure is oxidative stress; moreover, recent findings suggest that disturbances of the redox status of cells are associated with epigenetic responses, and metabolism of glutathione (GSH) plays an important role in this process. This study aimed to assess Pb exposure on % methylation of GSH-related genes' promoter regions (%CH3-CpG) and their influence on biomarkers of oxidative stress, in workers exposed to the metal. One hundred nine male workers participated in the study; ICP-MS determined blood lead levels (BLL); biochemical parameters related to redox status, named GSH, glutathione peroxidase (GPX) and glutathione-S-transferase (GST) were quantified by UV/Vis spectrophotometry. Determination of %CH3-CpG of genes GCLC, GPX1, GSR, and GSTP1 were done by pyrosequencing. Inverse associations were seen between BLL and %CH3-CpG-GCLC, and %CH3-CpG-GSTP1. Moreover, metal exposure did not impact GSH, GPX, and GST; however, negative associations were observed between %CH3-CpG-GPX1 and %CH3-CpG-GSTP1, and the activities of GPX and GST, respectively. Taken together, our results give further evidence about adaptive epigenetic response to avoid oxidative damage induced by Pb exposure, allowing a better understanding of the molecular mechanisms related to the metal toxicity.
Collapse
Affiliation(s)
- Paula Pícoli Devóz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Mariana Bisarro Dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela 1331, CEP 14784-400, Barretos, SP, Brazil
| | - Willian Robert Gomes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Avenida Ana Costa 95, CEP 11060-001, Santos, SP, Brazil
| | - Diego Luis Ribeiro
- Departament of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Denise Grotto
- University of Sorocaba, Rodovia Raposo Tavares km 92.5, CEP 18023-000, Sorocaba, SP, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela 1331, CEP 14784-400, Barretos, SP, Brazil; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Gualtar Campus, 4710-057, Braga, Portugal
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/n, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Avenida Ana Costa 95, CEP 11060-001, Santos, SP, Brazil.
| |
Collapse
|
7
|
de Araújo ML, Gomes BC, Devóz PP, Duarte NDAA, Ribeiro DL, de Araújo AL, Batista BL, Antunes LMG, Barbosa F, Rodrigues AS, Rueff J, Barcelos GRM. Association Between miR-148a and DNA Methylation Profile in Individuals Exposed to Lead (Pb). Front Genet 2021; 12:620744. [PMID: 33679885 PMCID: PMC7928366 DOI: 10.3389/fgene.2021.620744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Experimental and epidemiologic studies have shown that lead (Pb) is able to induce epigenetic modifications, such as changes in DNA methylation profiles, in chromatin remodeling, as well as the expression of non-coding RNAs (ncRNAs). However, very little is known about the interactions between microRNAs (miRNAs) expression and DNA methylation status in individuals exposed to the metal. The aim of the present study was to investigate the impact of hsa-miR-148a expression on DNA methylation status, in 85 workers exposed to Pb. Blood and plasma lead levels (BLL and PLL, respectively) were determined by ICP-MS; expression of the miRNA-148a was quantified by RT-qPCR (TaqMan assay) and assessment of the global DNA methylation profile (by measurement of 5-methylcytosine; % 5-mC) was performed by ELISA. An inverse association was seen between miR-148a and % 5-mC DNA, as a function of BLL and PLL (β = −3.7; p = 0.071 and β = −4.1; p = 0.049, respectively) adjusted for age, BMI, smoking, and alcohol consumption. Taken together, our study provides further evidence concerning the interactions between DNA methylation profile and miR-148a, in individuals exposed to Pb.
Collapse
Affiliation(s)
- Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, NOVA Medical School (NMS), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Paula Pícoli Devóz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - António Sebastião Rodrigues
- Center for Toxicogenomics and Human Health, NOVA Medical School (NMS), Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Rueff
- Center for Toxicogenomics and Human Health, NOVA Medical School (NMS), Universidade Nova de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
8
|
Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:131-156. [PMID: 31543064 DOI: 10.1080/10937404.2019.1661588] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - João Paulo Bianchi Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Christian Hoffmann
- Departmento de Alimentos e Nutrição Experimental Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
9
|
Takahashi T, Shimohata T. Vascular Dysfunction Induced by Mercury Exposure. Int J Mol Sci 2019; 20:E2435. [PMID: 31100949 PMCID: PMC6566353 DOI: 10.3390/ijms20102435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood-brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata 950-2085, Japan.
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
10
|
Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010093. [PMID: 28106810 PMCID: PMC5295343 DOI: 10.3390/ijerph14010093] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/16/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure.
Collapse
|