1
|
Pan Y, Wang Y, Wang Y, Xu S, Jiang F, Han Y, Hu M, Liu Z. Platelet-derived microvesicles (PMVs) in cancer progression and clinical applications. Clin Transl Oncol 2023; 25:873-881. [PMID: 36417084 DOI: 10.1007/s12094-022-03014-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Platelet-derived microvesicles (PMVs), the microvesicles with the highest concentration in the bloodstream, play a key role in the regulation of hemostasis, inflammation, and angiogenesis. PMVs have recently been identified as key factors in the link between platelets and cancer. PMVs bind to both cancer cells and nontransformed cells in the microenvironment of the tumor, and then transfer platelet-derived contents to the target cell. These contents have the potential to either stimulate or modulate the target cell's response. PMVs are encased in a lipid bilayer that contains surface proteins and lipids as well as components found inside the PMV. Each of these components participates in known and potential PMV roles in cancer. The complicated roles played by PMVs in the onset, development, and progression of cancer and cancer-related comorbidities are summarized in this study.
Collapse
Affiliation(s)
- Yan Pan
- Department of Blood Transfusion, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yanzhong Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Azadeh H. Association between disease-modifying antirheumatic drugs and bone turnover biomarkers. Int J Rheum Dis 2023; 26:437-445. [PMID: 36573666 DOI: 10.1111/1756-185x.14550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) has been linked to an increased risk of osteoporosis as well as fractures. Patients diagnosed with RA had a 25% increased risk of osteoporotic fracture, according to a recent population-based cohort study that compared them to people without RA. Several studies have found a correlation between osteoporosis and the presence of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and 6. These cytokines play a crucial part in the process of bone resorption by boosting osteoclast activation and encouraging osteoclast differentiation. Based on the correlation between RA, osteoporosis, and inflammation, it is possible that systemic immunosuppression with disease-modifying antirheumatic drugs (DMARDs) can help individuals with RA have a lower chance of developing osteoporosis and osteoporotic fractures. There is little information on how different DMARDs, biologic or non-biologic, affect RA patients' bone metabolism. In this study, we present an overview of the influence that targeted therapies, such as biologics, non-biologics, and small molecule inhibitors, have on bone homeostasis in RA patients.
Collapse
Affiliation(s)
- Hossein Azadeh
- Department of Internal Medicine, Rheumatology Division, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1545-1553. [PMID: 36587109 DOI: 10.1007/s12094-022-03065-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic cancer in adults. Some patients exhibit restricted T cell infiltration and do not respond to routine treatments. This may be prevented by enhancing adaptive immunity by stimulating innate immune cells inside the tumor microenvironment (TME). To activate the adaptive immunological reaction against tumors, type I interferons (IFNs) can promote the presentation of tumor-specific cytotoxic T lymphocyte (CTL) cell recruitment. During the activation of innate immunity, cyclic di-nucleotides (CDNs) bind to and stimulate the stimulator of interferon genes (STING), a protein localized inside the endoplasmic reticulum (ER) membrane, resulting in the expression of type I IFNs. The efficacy of STING agonists as effective stimulators of the anti-tumor response in AML is being investigated in numerous clinical studies. Therefore, the purpose of this investigation was to thoroughly review existing knowledge in this field and provide perspective into the clinical potential of STING agonists in AML.
Collapse
|
4
|
Nokhostin F, Azadehrah M, Azadehrah M. The multifaced role and therapeutic regulation of autophagy in ovarian cancer. Clin Transl Oncol 2022; 25:1207-1217. [PMID: 36534371 DOI: 10.1007/s12094-022-03045-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is one of the tumors that occurs most frequently in women. Autophagy is involved in cell homeostasis, biomolecule recycling, and survival, making it a potential target for anti-tumor drugs. It is worth noting that growing evidence reveals a close link between autophagy and OC. In the context of OC, autophagy demonstrates activity as both a tumor suppressor and a tumor promoter, depending on the context. Autophagy's exact function in OC is greatly reliant on the tumor microenvironment (TME) and other conditions, such as hypoxia, nutritional deficiency, chemotherapy, and so on. However, what can be concluded from different studies is that autophagy-related signaling pathways, especially PI3K/AKT/mTOR axis, increase in advanced stages and malignant phenotype of the disease reduces autophagy and ultimately leads to tumor progression. This study sought to present a thorough understanding of the role of autophagy-related signaling pathways in OC and existing therapies targeting these signaling pathways.
Collapse
Affiliation(s)
- Fahimeh Nokhostin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Mahboobeh Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Malihe Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
Kazemizadeh H, Kashefizadeh A. CRISPR-Cas9-mediated gene therapy in lung cancer. Clin Transl Oncol 2022; 25:1156-1166. [PMID: 36495467 DOI: 10.1007/s12094-022-03039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
As the largest cause of cancer-related deaths worldwide, pulmonary cancer is the most common form of the disease. Several genetic, epigenetic, and environmental factors come into play during the multi-step mechanism of tumorigenesis. The heterogeneity that makes discovering successful therapeutics for pulmonary cancer problematic is significantly influenced by the epigenetic landscape, including DNA methylation, chromatin architecture, histone modifications, and noncoding RNA control. Clinical activity of epigenetic-targeted medicines has been reported in hematological tumors, and these compounds may also have therapeutic effects in solid tumors. Over the course of the past few years, some researchers have successfully modified the expression of genes in cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) technique. The utilization of this technology allows for the induction of site-specific mutagenesis, epigenetic alterations, and the regulation of gene expression. This study will present an overview of the primary epigenetic alterations seen in pulmonary cancer, as well as a summary of therapeutic implications for targeting epigenetics in the management of pulmonary cancer, with a particular emphasis on the technique known as CRISPR/Cas9.
Collapse
Affiliation(s)
- Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Understanding the role of Cripto-1 in cancer progression and therapeutic strategies. Clin Transl Oncol 2022; 25:1135-1144. [PMID: 36456761 DOI: 10.1007/s12094-022-03023-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
During the initial stages of gastrulation during embryonic differentiation and wound healing, Cripto-1 is a critical protein for human growth. The epithelial adhesion molecules' downregulation, the mesenchymal overexpression, and mobile proteins are important mechanisms by which Cripto-1 initiates epithelial to mesenchymal transition (EMT). As a result, the function of Cripto-1 for inducing EMT to increase cell migration is advantageous during embryogenesis; however, it is deleterious during the formation, growth, and malignant tumor metastasis. The majority of malignancies are reported to have elevated levels of Cripto-1. Cripto-1 can modify cancerous cells through its function in EMT, which enables these cells to migrate via the extracellular matrix, bloodstream, and lymphatic vessels, on their way for metastasizing to other organs. The goal of this review is to explain what role Cripto-1 plays in common cancers and to summarize how therapeutic strategies are used to interfere with this molecule to target cancers.
Collapse
|
7
|
Normal values of the pulmonary artery acceleration time (PAAT) and the right ventricular ejection time (RVET) in children and adolescents and the impact of the PAAT/RVET-index in the assessment of pulmonary hypertension. Int J Cardiovasc Imaging 2019; 35:295-306. [PMID: 30689192 DOI: 10.1007/s10554-019-01540-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/17/2019] [Indexed: 02/04/2023]
Abstract
New echocardiographic modalities including pulmonary artery acceleration time (PAAT) and right ventricular ejection time (RVET) are evolving to facilitate an early non-invasive diagnosis for pulmonary hypertension (PH) in adults. In children, PAAT depends on age, body surface area (BSA) and heart rate (HR) and is used to predict PH. Normal values of RVET and their role to predict PH in children are still missing. PAAT/RVET-index correlates negatively with PH. We hypothesized that this index is a good predictor for PH in children and adolescents independent of age, BSA and HR and RVET is significantly reduced in PH. PAAT and RVET of 401 healthy children and 30 PH-patients were measured using pulsed-wave-Doppler. PH was diagnosed in PH-group invasively. PAAT/RVET-index for both groups was calculated. Sensitivity and specificity in prediction of PH of PAAT, PAAT z-score and PAAT/RVET-index were compared. We demonstrated normal values of RVET in children. In the healthy group, PAAT and RVET correlated significant positive to age (p < 0.001), and BSA (p < 0.001) and negative to HR (p < 0.001). PAAT/RVET-index correlated weakly to age, BSA and HR (p < 0.001). Mean pulmonary artery pressure (PAPM) ranged in the PH-group from 27 to 82 mmHg (mean 44 mmHg). In predicting PH, RVET is significantly reduced (p < 0.001). Comparing area under the curve (AUC), the difference between sensitivity and specificity of PAAT/RVET-index < 0.29 and calculated PAAT cut-off-point (87 ms) was significant (p < 0.001). Equally, AUC comparison between PAAT/RVET-index < 0.29 and PAAT z-score of - 1.33 was significant (p = 0.008). PAAT/RVET-index < 0.29 represents a good predictor of PH with a 100% sensitivity and a 95.8% specificity. PAAT/RVET-index is a simple tool and facilitates prediction of PH independent from z-scores.
Collapse
|
8
|
Dimopoulos K, Condliffe R, Tulloh RM, Clift P, Alonso-Gonzalez R, Bedair R, Chung NA, Coghlan G, Fitzsimmons S, Frigiola A, Howard LS, Jenkins P, Kenny D, Li W, MacDonald ST, McCabe C, Oliver JJ, Spence MS, Szantho GV, von Klemperer K, Wilson DG, Wort SJ. Echocardiographic Screening for Pulmonary Hypertension in Congenital Heart Disease. J Am Coll Cardiol 2018; 72:2778-2788. [DOI: 10.1016/j.jacc.2018.08.2201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
|
9
|
A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatr Cardiol 2015; 36:1400-10. [PMID: 25860641 DOI: 10.1007/s00246-015-1173-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) is the most prevalent type of birth defect in humans and is the leading non-infectious cause of infant death worldwide. There is a growing body of evidence demonstrating that genetic defects play an important role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disease and the genetic basis underpinning CHD in an overwhelming majority of patients remains unclear. In this study, the coding exons and splice junction sites of the TBX1 gene, which encodes a T-box homeodomain transcription factor essential for proper cardiovascular morphogenesis, were sequenced in 230 unrelated children with CHD. The available family members of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were subsequently genotyped for TBX1. The functional effect of the TBX1 mutation was predicted by online program MutationTaster and characterized by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX1 mutation, p.Q277X, was identified in an index patient with double outlet right ventricle (DORV) and ventricular septal defect (VSD). Genetic analysis of the proband's available relatives showed that the mutation co-segregated with CHD transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily across species and was predicted to be disease-causing by MutationTaster. Biochemical analysis revealed that Q277X-mutant TBX1 lost transcriptional activating function when compared with its wild-type counterpart. This study firstly associates TBX1 loss-of-function mutation with enhanced susceptibility to DORV and VSD in humans, which provides novel insight into the molecular mechanism underlying CHD and suggests potential implications for the development of new preventive and therapeutic strategies for CHD.
Collapse
|