1
|
Krings GJ, Driesen BW, Warmerdam EG, Molenschot MC, Sieswerda GJT, Doevendans PA, van Dijk AP, Voskuil M. Percutaneous pulmonary valve implantation guided by three-dimensional rotational angiography. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 18:100541. [PMID: 39713229 PMCID: PMC11658213 DOI: 10.1016/j.ijcchd.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 12/24/2024] Open
Abstract
Objectives To describe the workflow and value of three-dimensional rotational angiography (3DRA) in percutaneous pulmonary valve implantation (PPVI). Background 3DRA offers visualization of the entire topography in the chest and may enhance safety and reduce the risk for complications in PPVI through improved pre-procedural planning and per-procedural guidance. Methods All PPVI procedures with the use of 3DRA performed between August 2011 and December 2022 were reviewed. Success rate, complications and radiation dose were assessed. Radiation dose of the latest 3DRA protocol was compared to historical 3DRA data. Results PPVI was successful in 95 of 102 procedures. Seven procedures were aborted due to coronary compression after balloon testing (n = 3), main pulmonary artery (MPA) oversize (n = 3) and not passing of a Melody valve through a calcified Melody valve in situ (n = 1). PPVI was attempted in 61 homografts, 19 native right ventricular outflow tracts (including transannular patch), 4 previously implanted Melody valves, 2 in previously implanted Sapien valves and 16 in other bioprosthetic valves. A Melody valve was implanted in 43, a Sapien valve in 49 and a Pulsta valve in 1 patient. In 2 patients a Melody as well as a Sapien valve were subsequently implanted. Mean total dose area product (DAP) was 11813 mGycm2 and 179 mGycm2/kg for all attempted PPVI's. For successful PPVI 9835 mGycm2 and 174 mGycm2/kg. After optimizing the 3DRA protocols the mean dose reduced from 12677 mGycm2 to 8551 mGycm2 (200 mGycm2/kg to 163 mGycm2/kg). Four patients experienced one or more complications. There were no deaths peri-procedural or during follow-up. Complications were; need for cardiopulmonary resuscitation (n = 2), MPA paravasation (n = 1), valve dysfunction (n = 2). Conclusions The use of rotational angiography for the guidance of PPVI results in a high success rate, low number of complications with the use of a low amount of radiation.
Collapse
Affiliation(s)
- Gregor J. Krings
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart W. Driesen
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Cardiology, Maasziekenhuis Pantein, Beugen, the Netherlands
| | - Evangeline G. Warmerdam
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mirella C. Molenschot
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gert-Jan T. Sieswerda
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Department of Cardiology, Central Military Hospital, Utrecht, the Netherlands
| | - Arie P.J. van Dijk
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M. Voskuil
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Vargas-Acevedo C, Mejia E, Zablah JE, Morgan GJ. Fusion imaging for guidance of pulmonary arteriovenous malformation embolisation with minimal radiation and contrast exposure. Cardiol Young 2024; 34:1451-1455. [PMID: 38425313 DOI: 10.1017/s1047951124000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Hereditary haemorrhagic telangiectasia is an inherited disorder characterised by vascular dysplasia that leads to the development of arteriovenous malformations. Pulmonary arteriovenous malformations occur in approximately 30% of patients with haemorrhagic telangiectasia. Given the complex characteristics of haemorrhagic telangiectasia lesions, the application of three-dimensional fusion imaging holds significant promise for procedural guidance and decrease in contrast and radiation dosing. We reviewed all patients who underwent transcatheter approach for pulmonary arteriovenous malformation occlusion with fusion image guidance from June 2018 to September 2023 from a single centre. A total of nine cases with haemorrhagic telangiectasia and transcatheter occlusion of pulmonary arteriovenous malformations using fusion imaging were identified. Five (56%) were male, mean age at procedure was 15.7 years (10-28 years) and mean number of pulmonary arteriovenous malformations intervened was three per patient (1-7). Two of the cases were complex repeat embolisations. The mean fluoroscopy time was 40.6 min (10.7-68.8 min), with mean contrast dose of 28.8 mL (11-60 mL; mean of 0.51 mL/kg) and mean radiation dose of 66.3 mGy (25.6-140 mGy; mean of 40.5 mGy/m2). There were no complications reported during the procedures, with no additional interventions necessary. Fusion imaging in pulmonary arteriovenous malformations embolisation for patients with haemorrhagic telangiectasia is feasible and has the potential to reduce contrast and radiation doses. To our knowledge, we describe the lowest radiation and contrast doses per patient using fusion imaging technology reported in the literature to date.
Collapse
Affiliation(s)
- Catalina Vargas-Acevedo
- Department of Pediatric Cardiology, University of Colorado, The Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Ernesto Mejia
- Department of Pediatric Cardiology, University of Colorado, The Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Jenny E Zablah
- Department of Pediatric Cardiology, University of Colorado, The Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Gareth J Morgan
- Department of Pediatric Cardiology, University of Colorado, The Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
3
|
Gonzalez de Alba C, Zablah JE, Burkett D, Jone PN, Rodriguez SA, Morgan GJ. Use of Three-Dimensional Intracardiac Echocardiography Catheter in the Evaluation of Prosthetic Pulmonary Valves after Transcatheter Replacement. J Am Soc Echocardiogr 2024; 37:226-236. [PMID: 37839619 DOI: 10.1016/j.echo.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Transcatheter pulmonary valve replacement (TPVR) is commonly performed in patients with congenital heart disease as a safe alternative to replacement via open heart surgery. Intracardiac echocardiography (ICE) is a useful technique for evaluating multiple structures that are difficult to assess by other echocardiographic techniques, particularly the pulmonary valve. To our knowledge, the use of three-dimensional (3D) ICE catheters to evaluate prosthetic valves after TPVR has not been reported. Three-dimensional ICE catheters offer a comprehensive evaluation of transcatheter-deployed pulmonary valves through 3D, 3D color, xPlane, and multiplane reconstruction. The aim of this study is to demonstrate the feasibility of using 3D ICE catheters, outline their role in evaluating post-TPVR deployment success and complications, consider their additive value to two-dimensional ICE, and present our institutional experience with it in 50 cases of TPVR.
Collapse
Affiliation(s)
- Cesar Gonzalez de Alba
- The Heart Institute, Children's Hospital Colorado, Aurora, Colorado; School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| | - Jenny E Zablah
- The Heart Institute, Children's Hospital Colorado, Aurora, Colorado; School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Dale Burkett
- The Heart Institute, Children's Hospital Colorado, Aurora, Colorado; School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Pei-Ni Jone
- School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Salvador A Rodriguez
- The Heart Institute, Children's Hospital Colorado, Aurora, Colorado; School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Gareth J Morgan
- The Heart Institute, Children's Hospital Colorado, Aurora, Colorado; School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado; Department of Cardiology, University of Colorado Hospital, Aurora, Colorado
| |
Collapse
|
4
|
Buytaert D, Vandekerckhove K, Panzer J, Campens L, Bacher K, De Wolf D. Multimodality 3D image fusion with live fluoroscopy reduces radiation dose during catheterization of congenital heart defects. Front Cardiovasc Med 2024; 10:1292039. [PMID: 38274314 PMCID: PMC10808650 DOI: 10.3389/fcvm.2023.1292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Imaging fusion technology is promising as it is radiation and contrast sparing. Herein, we compare conventional biplane angiography to multimodality image fusion with live fluoroscopy using two-dimensional (2D)-three-dimensional (3D) registration (MMIF2D-3D) and assess MMIF2D-3D impact on radiation exposure and contrast volume during cardiac catheterization of patients with congenital heart disease (CHD). Methods We matched institutional MMIF2D-3D procedures and controls according to patient characteristics (body mass index, age, and gender) and the seven procedure-type subgroups. Then, we matched the number of tests and controls per subgroup using chronological ordering or propensity score matching. Subsequently, we combined the matched subgroups into larger subgroups of similar procedure type, keeping subgroups with at least 10 test and 10 control cases. Air kerma (AK) and dose area product (DAP) were normalized by body weight (BW), product of body weight and fluoroscopy time (BW × FT), or product of body weight and number of frames (BW × FR), and stratified by acquisition plane and irradiation event type (fluoroscopy or acquisition). Three senior interventionists evaluated the relevance of MMIF2D-3D (5-point Likert scale). Results The Overall group consisted of 54 MMIF2D-3D cases. The combined and matched subgroups were pulmonary artery stenting (StentPUL), aorta angioplasty (PlastyAO), pulmonary artery angioplasty (PlastyPUL), or a combination of the latter two (Plasty). The FT of the lateral plane reduced significantly by 69.6% for the Overall MMIF2D-3D population. AKBW and DAPBW decreased, respectively, by 43.9% and 39.3% (Overall group), 49.3% and 54.9% (PlastyAO), and 36.7% and 44.4% for the Plasty subgroup. All the aforementioned reductions were statistically significant except for DAPBW in the Overall and Plasty (sub)groups. The decrease of AKBW and DAPBW in the StentPUL and PlastyPUL subgroups was not statistically significant. The decrease in the median values of the weight-normalized contrast volume (CMCBW) in all five subgroups was not significant. Cardiologists considered MMIF2D-3D very useful with a median score of 4. Conclusion In our institution, MMIF2D-3D overall enabled significant AKBW reduction during the catheterization of CHD patients and was mainly driven by reduced FT in the lateral plane. We observed significant AKBW reduction in the Plasty and PlastyAO subgroups and DAPBW reduction in the PlastyAO subgroup. However, the decrease in CMCBW was not significant.
Collapse
Affiliation(s)
- Dimitri Buytaert
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | | | - Joseph Panzer
- Department of Paediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Laurence Campens
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Klaus Bacher
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Daniël De Wolf
- Department of Paediatric Cardiology, Ghent University Hospital, Ghent, Belgium
- Department of Paediatric Cardiology, Brussels University Hospital, Jette, Belgium
| |
Collapse
|
5
|
Zablah JE, Døhlen G, Ystgaard MB, Morgan GJ. Piggyback mounting for stent and valve deployment during percutaneous pulmonary valve implantation. Catheter Cardiovasc Interv 2022; 100:606-611. [PMID: 36047314 DOI: 10.1002/ccd.30391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/18/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES We report our experience in simultaneously implanting multiple stents and valves mounted on a single balloon before and during transcatheter pulmonary valve placement. BACKGROUND Heterogeneity and complexity of the right ventricular outflow tract (RVOT) may complicate stent deployment when preparing a landing zone for transcatheter pulmonary valve implantation. METHODS Retrospective analysis of patients from Children's Hospital of Colorado, USA; and Oslo University Hospital, Norway, undergoing transcatheter pulmonary valve replacement that had at least two stents mounted on a single balloon, deployed in the RVOT. RESULTS Over a 42-month period, a total of 50 subjects from the two centers met inclusion criteria for the study. Subjects were predominantly male (58%), and the median age was 17 years (4-78 years). In six subjects (12%), there was need for prestenting with use of the double or triple stent piggyback technique. Forty subjects (80%) had a Melody ™ TPV implanted. In 45 cases (90%), one or more stents were mounted over the pulmonary valve using its delivery system, either the Ensemble for the Melody™ TPV or the Edwards Commander for the SAPIEN 3 THV. Thirty-seven subjects (74%) had one stent mounted and eight subjects (16%) had two stents mounted over the pulmonary valve for simultaneous deployment. No complications related to this technique were reported. CONCLUSIONS The piggyback technique aims to simplify and facilitate adequate conduit preparation and valve insertion by minimizing manipulation across the outflow tract and decreasing the risk of stent distortion, misalignment, and embolization.
Collapse
Affiliation(s)
- Jenny E Zablah
- Department of Congenital Heart Disease, University of Colorado, Denver, Colorado, USA
| | - Gaute Døhlen
- Pediatric Heart Diseases, Oslo University Hospital, Oslo, Norway
| | | | - Gareth J Morgan
- Department of Congenital Heart Disease, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
6
|
Cardiovascular Computed Tomography in Pediatric Congenital Heart Disease: A State of the Art Review. J Cardiovasc Comput Tomogr 2022; 16:467-482. [DOI: 10.1016/j.jcct.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/04/2023]
|
7
|
Baseline intracardiac echocardiography predicts haemodynamic changes and Doppler velocity patterns during follow-up after percutaneous pulmonary valve implantation. Cardiol Young 2022; 32:444-450. [PMID: 34140059 DOI: 10.1017/s1047951121002365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Intracardiac echocardiography Doppler-derived gradients have previously been shown to correlate with post-procedure echocardiographic evaluations when compared with invasive gradients measured during percutaneous pulmonary valve implantation, suggesting that intracardiac echocardiography could offer an accurate and predictable starting point to estimate valve function after percutaneous pulmonary valve implantation. METHODS We performed a retrospective chart review of 51 patients who underwent percutaneous pulmonary valve implantation between September 2018 and December 2019 in whom intracardiac echocardiography was performed immediately after valve implantation. We evaluated the correlation between intracardiac echocardiography gradients and post-procedural Doppler-derived gradients. Among the parameters assessed, those which demonstrated the strongest correlation were used to create a predictive model of expected echo-derived gradients after percutaneous pulmonary valve implantation. The equation was validated on the same sample data along with a subsequent cohort of 25 consecutive patients collected between January 2020 and July 2020. RESULTS All the assessed correlation models between intracardiac echocardiography evaluation and post-procedure transthoracic echocardiographic assessments were statistically significant, presenting moderate to strong correlations. The strongest relationship was found between intracardiac echocardiography mean gradients and post-procedural transthoracic echocardiographic mean gradients. Therefore, an equation was created based on the intracardiac echocardiography-derived mean gradient, to allow prediction of the post-procedural and follow-up transthoracic echocardiographic-derived mean gradients within a range of ±5 mmHg from the observed value in more than 80% of cases. CONCLUSIONS There is a strong correlation between intracardiac echocardiography and post-procedure transthoracic echocardiographic. This allowed us to derive a predictive equation that defines the expected transthoracic echocardiographic Doppler-derived gradient following the procedure and at out-patient follow-up after percutaneous pulmonary valve implantation.
Collapse
|
8
|
Zablah JE, Rodriguez SA, Lorenz A, Morgan GJ. Cardiac catheterization laboratory and the role in effective patient education: A model approach. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|