1
|
Azma R, Arenos-Abril J, Junhasavasdiku T, Tewattanarat N, Nourmohammad A, Abadeh A, Panwar S, Villani A, Malkin D, Doria AS. Patterns of Growth of Tumors in Li-Fraumeni Syndrome by Imaging: A Case Series. J Pediatr Hematol Oncol 2024; 46:335-348. [PMID: 39185882 DOI: 10.1097/mph.0000000000002928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/14/2024] [Indexed: 08/27/2024]
Abstract
Although tumors of Li-Fraumeni syndrome (LFS) have a premalignant or dormant phase that could be exploited by early imaging detection, this has been underevaluated in the literature. We present a case series of patients with LFS followed by imaging over time to highlight patterns of growth of tumors and hotspots of missed tumors in this population. Clinical and imaging features were available for 29 tumors of 24 carriers of a germline TP53 pathogenic variant, developed between 1999 and 2023 were retrospectively reviewed in a single tertiary pediatric center. Imaging characteristics of tumors were evaluated with MRI, CT, and radiographs. Local invasion, time interval for developing primary cancer, and/or recurrent disease and metastasis, and factors that delayed the tumor diagnosis were assessed. In patients with multiple tumors the median time intervals for development of first, second, and third primary cancers were 45.9, 79.8, and 28.1 months, respectively. Hotspots of missed tumors included superficial soft tissues, areas close to bones, on the scalp, in tissues around the adrenal region and in small hypodense lesions on brain CT. In conclusion, the pattern of growth of tumors is variable and erratic in LFS patients with some tumors presenting with a dormant pattern.
Collapse
Affiliation(s)
- Roxana Azma
- Department of Radiology and Diagnostic Imaging, University of Alberta, University of Alberta Hospital, Edmonton, AB
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
| | - Jesus Arenos-Abril
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto
| | - Thitiporn Junhasavasdiku
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
| | - Nipaporn Tewattanarat
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Sanuj Panwar
- Department of Radiology, Krishna Advanced M.R.I & C.T Research Center, Vellore, Tamil Nadu, India
| | - Anita Villani
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Pediatrics, Division of Hematology/Oncology
| | - David Malkin
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Pediatrics, Division of Hematology/Oncology
| | - Andrea S Doria
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Neves R, Panek R, Clarkson K, Panagioti O, Fernandez NS, Wilne S, Suri M, Whitehouse WP, Jagani S, Dandapani M, Glazebrook C, Dineen RA. Feasibility of whole-body MRI for cancer screening in children and young people with ataxia telangiectasia: A mixed methods cross-sectional study. Cancer Med 2024; 13:e70049. [PMID: 39056567 PMCID: PMC11273546 DOI: 10.1002/cam4.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ataxia telangiectasia (A-T) is an inherited multisystem disorder with increased sensitivity to ionising radiation and elevated cancer risk. Although other cancer predisposition syndromes have established cancer screening protocols, evidence-based guidelines for cancer screening in A-T are lacking. This study sought to assess feasibility of a cancer screening protocol based on whole-body MRI (WB-MRI) in children and young people with A-T. DESIGN/METHODS Children and young people with A-T were invited to undergo a one-off non-sedated 3-Tesla WB-MRI. Completion rate of WB-MRI was recorded and diagnostic image quality assessed by two experienced radiologists, with pre-specified success thresholds for scan completion of >50% participants and image quality between acceptable to excellent in 65% participants. Positive imaging findings were classified according to the ONCO-RADS system. Post-participation interviews were performed with recruited families to assess the experience of participating and feelings about waiting for, and communication of, the findings of the scan. RESULTS Forty-six children and young people with A-T were identified, of which 36 were eligible to participate, 18 were recruited and 16 underwent WB-MRI. Nineteen parents participated in interviews. Fifteen participants (83%) completed the full WB-MRI scan protocol. The pre-specified image quality criterion was achieved with diagnostic images obtained in at least 93% of each MRI sequence. Non-malignant scan findings were present in 4 (25%) participants. Six themes were identified from the interviews: (1) anxiety is a familiar feeling, (2) the process of MRI scanning is challenging for some children and families, (3) preparation is essential to reduce stress, (4) WB-MRI provides the reassurance about the physical health that families need, (5) WB-MRI experience turned out to be a positive experience and (6) WB-MRI allows families to be proactive. CONCLUSION This study shows that WB-MRI for cancer screening is feasible and well-accepted by children and young people with A-T and their families.
Collapse
Affiliation(s)
- Renata Neves
- Radiological Sciences, Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- Department of RadiologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Rafal Panek
- Medical Physics and Clinical EngineeringNottingham University Hospitals NHS TrustNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Katie Clarkson
- Radiological Sciences, Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | | | - Natasha Schneider Fernandez
- Independent Patient and Parent Representative, c/o Radiological Sciences, Mental Heatlh and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
| | - Sophie Wilne
- Department of Paediatric OncologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Mohnish Suri
- School of MedicineUniversity of NottinghamNottinghamUK
- Nottingham Clinical Genetics ServiceNottingham University Hospitals NHS TrustNottinghamUK
| | - William P. Whitehouse
- School of MedicineUniversity of NottinghamNottinghamUK
- Paediatric NeurologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Sumit Jagani
- Department of Radiology, Nottingham Children's HospitalNottingham University Hospitals NHS TrustNottinghamUK
| | - Madhumita Dandapani
- Department of Paediatric OncologyNottingham University Hospitals NHS TrustNottinghamUK
- Children's Brain Tumour Research CentreUniversity of NottinghamNottinghamUK
| | - Cris Glazebrook
- Institute of Mental HealthUniversity of NottinghamNottinghamUK
| | - Robert A. Dineen
- Radiological Sciences, Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- Department of RadiologyNottingham University Hospitals NHS TrustNottinghamUK
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
3
|
Neves R, Perez BDD, Tindall T, Fernandez NS, Panek R, Wilne S, Suri M, Whitehouse W, Jagani S, Dandapani M, Dineen RA, Glazebrook C. Whole-body MRI for cancer surveillance in ataxia-telangiectasia: A qualitative study of the perspectives of people affected by A-T and their families. Health Expect 2023; 26:1358-1367. [PMID: 36929011 PMCID: PMC10154855 DOI: 10.1111/hex.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/21/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES Ataxia-telangiectasia (A-T) is a complex inherited disease associated with an increased risk of malignancy. Surveillance guidelines have demonstrated significant health benefits in other cancer predisposition syndromes. However, evidence-based guidelines for cancer screening are not currently used in the United Kingdom for people affected by A-T. This study aims to understand how people with A-T and their parents feel about cancer surveillance using whole-body magnetic resonance imaging (MRI) to inform the future development of cancer surveillance guidelines. DESIGN/METHODS We conducted semistructured interviews with people affected by A-T. Data were analysed inductively using thematic analysis. RESULTS Nine parents of children with A-T and four adults with A-T were interviewed. Five main themes emerged from the data, including (1) cancer screening was considered invaluable with the perceived value of early detection highlighted; (2) the cancer fear can increase anxiety; (3) the perceived limitations around current practice, with the responsibility for monitoring falling too strongly on parents and patients; (4) the need for effective preparation for cancer screening, including clear communication and (5) the challenges associated with MRI screening, where specific recommendations were made for improving the child's experience. CONCLUSION This study suggests that stakeholders are positive about the perceived advantages of a cancer screening programme. Ongoing support and preparation techniques should be adopted to maximise adherence and minimise adverse psychosocial outcomes. PATIENT OR PUBLIC CONTRIBUTION People with A-T and parents of people with A-T were actively involved in this study by giving their consent to be interviewed. An independent parent representative contributed to the study, supporting the research team in interpreting and commenting on the appropriateness of the language used in this report.
Collapse
Affiliation(s)
- Renata Neves
- Radiological Sciences, Mental Health and Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Blanca de Dios Perez
- Division of Rehabilitation, Ageing and Wellbeing, Centre for Rehabilitation and Ageing Research, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tierney Tindall
- Mental Health and Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Rafal Panek
- Department of Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sophie Wilne
- Department of Paediatric Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - William Whitehouse
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sumit Jagani
- Department of Radiology, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Madhumita Dandapani
- Children's Brain Tumour Research Centre, Medical School, University of Nottingham, Nottingham, UK
| | - Robert A Dineen
- Radiological Sciences, Mental Health and Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham, UK.,Division of Clinical Neuroscience, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Cris Glazebrook
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Le Cam S, de Boissieu P, Teglas JP, Merzoug V, Mannes I, Adamsbaum C. Analysis of whole-body MRI artifacts in a pediatric population with a special emphasis on the effect of hands position. Diagn Interv Imaging 2023; 104:153-159. [PMID: 36274050 DOI: 10.1016/j.diii.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this retrospective study was to determine the prevalence of artifacts on whole-body (WB) magnetic resonance imaging (MRI) examination in pediatric patients and identify their causes. MATERIALS AND METHODS A total of 107 pediatric patients who underwent a total of 107 WB-MRI examinations, including short-tau inversion recovery (STIR) and T1-weighted sequences, were included. There were 62 girls and 45 boys with a mean age of 11 ± 3 (SD) years (age range: 2-16 years). WB-MRI examinations were analyzed for the presence of artifacts on STIR and T1-weighted sequences. Artifacts were further assigned to one of eight categories (motion, partial volume, cross-talk, phase sampling, susceptibility, equipment, noise, and "other") and 19 anatomical sites by a 4-year resident. Prevalence of artifacts were analyzed especially according to hands position during the examination for the upper limbs and patients' age. Age was expressed as a binary variable using median age (10 years) as the cut-off value. All qualitative variables were compared using chi-square test. RESULTS A total of 3436 artifacts were found. The STIR sequences showed more "noise" artifacts (93/1038; 8.96%) and more "cross-talk" (102/1038; 9.83%) artifacts than T1-weighted sequences (12/1038 [1.16%] and 7/1038 [0.67%], respectively) (P < 0.001 for both). T1-weighted sequences showed more "equipment" (84/1038; 8.09%) and "stair-step" (a subset of "other") (41/1038; 3.95%) artifacts than the STIR sequences (39/1038 [3.76%] and 21/1038 [2.02%], respectively) (P < 0.001 and P = 0.01, respectively). T1-weighted sequences showed fewer artifacts on the wrists when the hands were under the bottom (P = 0.001). T1-weighted sequences showed less "equipment" artifacts when the hands were alongside the body (22/296; 7%) than on the abdomen (48/432; 11%) or under the bottom (14/128; 11%) (P < 0.001). STIR sequences showed more "motion" artifacts when the hands were on the abdomen (54/432; 13%) than alongside the body (30/296; 10%) or under the bottom (15/128; 12%) (P < 0.001). WB-MRI examinations had more "susceptibility" artifacts (38/960; 4%) and more "equipment" artifacts (81/960; 8.4%) in patients older than 10 years than in those under 10 years (23/752 [3.1%] and 42/752 [5.6%]) (P = 0.01 and P < 0.001, respectively). CONCLUSION Artifacts on WB-MRI do not affect coronal STIR and T1-weighted sequences equally, so the use of both sequence types appears useful. Hands position should be considered with respect to both diagnostic benefit and safety.
Collapse
Affiliation(s)
- Solène Le Cam
- Faculty of Medicine, Paris Saclay Université, 94270 Le Kremlin, Bicêtre, France; AP-HP, Bicêtre Hospital, Pediatric Imaging Department, 94270 Le Kremlin, Bicêtre, France
| | - Paul de Boissieu
- AP-HP, Bicêtre Hospital, Epidemiology and Public Health Department, 94270 Le Kremlin, Bicêtre, France
| | | | - Valérie Merzoug
- AP-HP, Bicêtre Hospital, Pediatric Imaging Department, 94270 Le Kremlin, Bicêtre, France
| | - Inès Mannes
- AP-HP, Bicêtre Hospital, Pediatric Imaging Department, 94270 Le Kremlin, Bicêtre, France
| | - Catherine Adamsbaum
- Faculty of Medicine, Paris Saclay Université, 94270 Le Kremlin, Bicêtre, France; AP-HP, Bicêtre Hospital, Pediatric Imaging Department, 94270 Le Kremlin, Bicêtre, France
| |
Collapse
|
5
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Herrmann J, Esser M, Brecht I, Tsiflikas I, Schäfer JF. [Whole-body MRI in cancer predisposition syndromes]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:1017-1025. [PMID: 36098807 DOI: 10.1007/s00117-022-01067-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In recent decades, whole-body magnetic resonance imaging (WB-MRI) has become established as the modality of choice for the diagnosis, staging, and follow-up of oncological diseases as well as for the screening of cancer predisposition syndromes, such as Li-Fraumeni syndrome. METHODS As a comprehensive imaging modality without ionizing radiation, WB-MRI can be used repetitively and because of its excellent soft tissue contrast and high resolution provides early and precise detection of pathologies. This article discusses the technical requirements, some examination strategies and the clinical significance of typical findings of WB-MRI in patients with cancer predisposition syndromes.
Collapse
Affiliation(s)
- Judith Herrmann
- Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - Michael Esser
- Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Ines Brecht
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Ilias Tsiflikas
- Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Jürgen F Schäfer
- Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| |
Collapse
|
7
|
Al-Sarhani H, Gottumukkala RV, Grasparil ADS, Tung EL, Gee MS, Greer MLC. Screening of cancer predisposition syndromes. Pediatr Radiol 2022; 52:401-417. [PMID: 33791839 DOI: 10.1007/s00247-021-05023-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Pediatric patients with cancer predisposition syndromes are at increased risk of developing malignancies compared with their age-matched peers, necessitating regular surveillance. Screening protocols differ among syndromes and are composed of a number of elements, imaging being one. Surveillance can be initiated in infants, children and adolescents with a tumor known or suspected of being related to a cancer predisposition syndrome or where genetic testing identifies a germline pathogenic gene variant in an asymptomatic child. Pre-symptomatic detection of malignant neoplasms offers potential to improve treatment options and survival outcomes, but the benefits and risks of screening need to be weighed, particularly with variable penetrance in many cancer predisposition syndromes. In this review we discuss the benefits and risks of surveillance imaging and the importance of integrating imaging and non-imaging screening elements. We explore the principles of surveillance imaging with particular reference to whole-body MRI, considering the strategies to minimize false-negative and manage false-positive whole-body MRI results, the value of standardized nomenclature when reporting risk stratification to better guide patient management, and the need for timely communication of results to allay anxiety. Cancer predisposition syndrome screening is a multimodality, multidisciplinary and longitudinal process, so developing formalized frameworks for surveillance imaging programs should enhance diagnostic performance while improving the patient experience.
Collapse
Affiliation(s)
- Haifa Al-Sarhani
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ravi V Gottumukkala
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelo Don S Grasparil
- Department of Radiological Sciences, Cardinal Santos Medical Center, San Juan City, Philippines
| | - Eric L Tung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Hirsch S, Dikow N, Pfister SM, Pajtler KW. Cancer predisposition in pediatric neuro-oncology-practical approaches and ethical considerations. Neurooncol Pract 2021; 8:526-538. [PMID: 34594567 PMCID: PMC8475219 DOI: 10.1093/nop/npab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A genetic predisposition to tumor development can be identified in up to 10% of pediatric patients with central nervous system (CNS) tumors. For some entities, the rate of an underlying predisposition is even considerably higher. In recent years, population-based approaches have helped to further delineate the role of cancer predisposition in pediatric oncology. Investigations for cancer predisposition syndrome (CPS) can be guided by clinical signs and family history leading to directed testing of specific genes. The increasingly adopted molecular analysis of tumor and often parallel blood samples with multi-gene panel, whole-exome, or whole-genome sequencing identifies additional patients with or without clinical signs. Diagnosis of a genetic predisposition may put an additional burden on affected families. However, information on a given cancer predisposition may be critical for the patient as potentially influences treatment decisions and may offer the patient and healthy carriers the chance to take part in intensified surveillance programs aiming at early tumor detection. In this review, we discuss some of the practical and ethical challenges resulting from the widespread use of new diagnostic techniques and the most important CPS that may manifest with brain tumors in childhood.
Collapse
Affiliation(s)
- Steffen Hirsch
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
9
|
Glutig K, Pfeil A, Renz DM. [Imaging of tumor predisposition syndromes]. Radiologe 2021; 61:658-666. [PMID: 34170362 DOI: 10.1007/s00117-021-00861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
CLINICAL ISSUE Tumor predisposition syndromes (TPS) are a heterogeneous group of genetic cancers. About 10% of the approximately 2200 malignancies in the childhood in Germany develop due to an inherited disposition, whereby TPS may be underdiagnosed. The focus of this review is set on imaging of Li-Fraumeni syndrome, neurofibromatoses, tuberous sclerosis, overgrowth, and neuroendocrine syndromes. STANDARD RADIOLOGICAL METHODS In order to detect tumors at an early stage, screening at specific time intervals for each TPS are required. Ultrasonography and magnetic resonance imaging (MRI), especially whole-body MRI, are particularly important imaging modalities. METHODOLOGICAL INNOVATIONS Innovative MRI techniques can increase image quality and patient comfort. MRI acquisition time can be significantly reduced through optimized acceleration factors, motion robust radial sequences and joint acquisition and readout of multiple slices during excitation. Thus, shorter MRI examinations can be performed in younger children without anesthesia. PRACTICAL RECOMMENDATION Regular screening with ultrasound and MRI can reduce the morbidity and mortality of the patients affected with TPS.
Collapse
Affiliation(s)
- K Glutig
- Institut für Diagnostische und Interventionelle Radiologie, Sektion Kinderradiologie, Universitätsklinikum Jena, 07740, Jena, Deutschland.
| | - A Pfeil
- Klinik für Innere Medizin III, Universitätsklinikum Jena, 07740, Jena, Deutschland
| | - D M Renz
- Institut für Diagnostische und Interventionelle Radiologie, Arbeitsbereich Kinderradiologie, Medizinische Hochschule Hannover, 30625, Hannover, Deutschland
| |
Collapse
|
10
|
Li N, Zheng H, Xu G, Gui T, Yin Q, Chen Q, Lee J, Xin Y, Zhang S, He Q, Zhang X, Liu X, Zheng H, Wang D, Li Y. Simultaneous Head and Spine MR Imaging in Children Using a Dedicated Multichannel Receiver System at 3T. IEEE Trans Biomed Eng 2021; 68:3659-3670. [PMID: 34014817 DOI: 10.1109/tbme.2021.3082149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this work was to enable simultaneous head and spine Magnetic Resonance imaging (MRI) in children at 3T by using a dedicated multichannel radiofrequency coil array system. METHODS A 24-channel head and spine pediatric coil system was developed and constructed. The coils performance was compared with a commercially available 24-channel adult head-neck coil and a spine coil (1-4 spine of 16-channel were selected). Signal-to-noise ratio (SNR) and parallel imaging capability were quantitatively evaluated by phantom studies and in vivo imaging experiments. With Institutional Review Board and Ethics Committee approval, the designed coil was used to acquire head and spine images on 27 children in clinical settings. RESULTS The pediatric coil provided substantial SNR improvements with an increase of 32 % to 40 % in the brain region and up to a two-fold increase in the surface. SNR increased by at least 18 % in the spine region. The coil enabled higher resolution and a faster imaging speed, owing to significantly improved SNR. Extensive coverage of the coil enabled high-quality fast imaging from head-neck to the whole spine. Good image quality with an average score 4.63 out of 5 was achieved using the developed pediatric coil in clinical studies. CONCLUSION Simultaneous head and spine MRI with superior performance have been successfully acquired in children subjects at 3T using the dedicated 24-channel head and spine pediatric coil system. SIGNIFICANCE The 24-channel pediatric coil system potentially can enhance pediatric head and spine MRI in clinical research and diagnosis.
Collapse
|
11
|
Frühwald MC, Nemes K, Boztug H, Cornips MCA, Evans DG, Farah R, Glentis S, Jorgensen M, Katsibardi K, Hirsch S, Jahnukainen K, Kventsel I, Kerl K, Kratz CP, Pajtler KW, Kordes U, Ridola V, Stutz E, Bourdeaut F. Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Fam Cancer 2021; 20:305-316. [PMID: 33532948 PMCID: PMC8484234 DOI: 10.1007/s10689-021-00229-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
The rhabdoid tumor (RT) predisposition syndromes 1 and 2 (RTPS1 and 2) are rare genetic conditions rendering young children vulnerable to an increased risk of RT, malignant neoplasms affecting the kidney, miscellaneous soft-part tissues, the liver and the central nervous system (Atypical Teratoid Rhabdoid Tumors, ATRT). Both, RTPS1&2 are due to pathogenic variants (PV) in genes encoding constituents of the BAF chromatin remodeling complex, i.e. SMARCB1 (RTPS1) and SMARCA4 (RTPS2). In contrast to other genetic disorders related to PVs in SMARCB1 and SMARCA4 such as Coffin-Siris Syndrome, RTPS1&2 are characterized by a predominance of truncating PVs, terminating transcription thus explaining a specific cancer risk. The penetrance of RTPS1 early in life is high and associated with a poor survival. However, few unaffected carriers may be encountered. Beyond RT, the tumor spectrum may be larger than initially suspected, and cancer surveillance offered to unaffected carriers (siblings or parents) and long-term survivors of RT is still a matter of discussion. RTPS2 exposes female carriers to an ill-defined risk of small cell carcinoma of the ovaries, hypercalcemic type (SCCOHT), which may appear in prepubertal females. RT surveillance protocols for these rare families have not been established. To address unresolved issues in the care of individuals with RTPS and to propose appropriate surveillance guidelines in childhood, the SIOPe Host Genome working group invited pediatric oncologists and geneticists to contribute to an expert meeting. The current manuscript summarizes conclusions of the panel discussion, including consented statements as well as non-evidence-based proposals for validation in the future.
Collapse
Affiliation(s)
- M C Frühwald
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - K Nemes
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - H Boztug
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M C A Cornips
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D G Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - R Farah
- Department of Pediatrics, Division of Hematology/Oncology, LAU Medical Center-Rizk Hospital, Ashrafieh, Beirut, Lebanon
| | - S Glentis
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - M Jorgensen
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | - K Katsibardi
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - S Hirsch
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - K Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Kventsel
- Department of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - K Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - C P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - U Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - V Ridola
- Department of Pediatric Oncology and Haematology, Mitera Children's Hospital, Athens, Greece
| | - E Stutz
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - F Bourdeaut
- Institut Curie, SIREDO Pediatric Cancer Center, INSERM U830, Laboratory of Translational Research in Pediatric Oncology, Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
12
|
Tunariu N, Blackledge M, Messiou C, Petralia G, Padhani A, Curcean S, Curcean A, Koh DM. What's New for Clinical Whole-body MRI (WB-MRI) in the 21st Century. Br J Radiol 2020; 93:20200562. [PMID: 32822545 PMCID: PMC8519652 DOI: 10.1259/bjr.20200562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Whole-body MRI (WB-MRI) has evolved since its first introduction in the 1970s as an imaging technique to detect and survey disease across multiple sites and organ systems in the body. The development of diffusion-weighted MRI (DWI) has added a new dimension to the implementation of WB-MRI on modern scanners, offering excellent lesion-to-background contrast, while achieving acceptable spatial resolution to detect focal lesions 5 to 10 mm in size. MRI hardware and software advances have reduced acquisition times, with studies taking 40-50 min to complete.The rising awareness of medical radiation exposure coupled with the advantages of MRI has resulted in increased utilization of WB-MRI in oncology, paediatrics, rheumatological and musculoskeletal conditions and more recently in population screening. There is recognition that WB-MRI can be used to track disease evolution and monitor response heterogeneity in patients with cancer. There are also opportunities to combine WB-MRI with molecular imaging on PET-MRI systems to harness the strengths of hybrid imaging. The advent of artificial intelligence and machine learning will shorten image acquisition times and image analyses, making the technique more competitive against other imaging technologies.
Collapse
Affiliation(s)
| | - Matthew Blackledge
- Department of Radiotherapy, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | - Giuseppe Petralia
- Department of Radiology, European Institute of Oncology, Via Ripamonti, 435 - 20141 Milan, Italy
| | - Anwar Padhani
- Mount Vernon Hospital, The Paul Strickland Scanner Centre, Rickmansworth Road, Northwood, Middlesex, UK
| | - Sebastian Curcean
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | | | - Dow-Mu Koh
- Drug Development Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| |
Collapse
|
13
|
Liu EK, Suson KD. Syndromic Wilms tumor: a review of predisposing conditions, surveillance and treatment. Transl Androl Urol 2020; 9:2370-2381. [PMID: 33209710 PMCID: PMC7658145 DOI: 10.21037/tau.2020.03.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Predisposing syndromes associated with an increased risk of Wilms tumor (WT) are responsible for 9–17% of all cases of the malignancy. Due to an earlier age at WT diagnosis and an increased incidence of bilateral and metachronous disease, management of syndromic WT warrants a distinct approach from that of non-syndromic WT. This review of English-language manuscripts about WT focuses on the most common syndromes, surveillance protocols and current treatment strategies. Highlighted syndromes include those associated with WT1, such as WAGR (Wilms-Aniridia-Genitourinary-mental Retardation), Denys-Drash syndrome (DDS), and Frasier syndrome, 11p15 defects, such as Beckwith-Wiedemann syndrome (BWS), among others. General surveillance guidelines include screening renal or abdominal ultrasound every 3–4 months until the age of 5 or 7, depending on the syndrome. Further, some of the predisposing conditions also increase the risk of other malignancies, such as gonadoblastoma and hepatoblastoma. With promising results for nephron-sparing surgery in bilateral non-syndromic WT, there are increasing reports and recommendations to pursue nephron-sparing for these patients who are at greater risk of bilateral, metachronous lesions. In addition to the loss of renal parenchyma from malignancy, many patients are at risk of developing renal insufficiency as part of their syndrome. Although there may be some increase in the complication rate, recurrence free survival seems equivalent. Some conditions require specialized approaches to adjuvant therapy, as their syndrome may make them especially susceptible to side effects.
Collapse
Affiliation(s)
- Esther K Liu
- Detroit Medical Center Urology, Detroit, MI, USA
| | - Kristina D Suson
- Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
14
|
Whole-Body MRI Surveillance of Cancer Predisposition Syndromes: Current Best Practice Guidelines for Use, Performance, and Interpretation. AJR Am J Roentgenol 2020; 215:1002-1011. [PMID: 32809862 DOI: 10.2214/ajr.19.22399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE. Whole-body MRI is a valuable tool in the surveillance of cancer predisposition syndromes (CPSs). Because it allows wide-FOV imaging without ionizing radiation, whole-body MRI is ideal in pediatric patients, enabling efficient assessment of different organ systems for multifocal disease. This article summarizes the use of whole-body MRI in pediatric patients with CPSs for earlier detection of malignancy, provides evidence where available, and offers guidance where lacking because of the rarity of CPSs. Protocol modifications and technique performance in specific CPSs are also considered. CONCLUSION. Whole-body MRI is the preferred imaging modality for surveillance of pediatric patients with CPSs, and the growing literature supports its importance in presymptomatic cancer detection.
Collapse
|
15
|
Genetic Testing for Cancer Predisposition Syndromes in Adolescents and Young Adults (AYAs). CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|