1
|
Dobbs JT, Kim MS, Reynolds GJ, Wilhelmi N, Dumroese RK, Klopfenstein NB, Fraedrich SW, Cram MM, Bronson J, Stewart JE. Fusarioid community diversity associated with conifer seedlings in forest nurseries across the contiguous USA. FRONTIERS IN PLANT SCIENCE 2023; 14:1104675. [PMID: 36818886 PMCID: PMC9930990 DOI: 10.3389/fpls.2023.1104675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fusarioid fungi that cause damping-off and root diseases can result in significant losses to conifer crops produced in forest nurseries across the USA. These nurseries are vital to reforestation and forest restoration efforts. Understanding the diversity of Fusarioid fungi associated with damping-off and root diseases of conifer seedlings can provide an approach for targeted management techniques to limit seedling losses and pathogen spread to novel landscapes. METHODS This study identifies 26 Fusarium spp. (F. acuminatum, F. annulatum, F. avenaceum, F. brachygibbosum, F. clavus, F. commune, F. cugenangense, F. diversisporum, F. elaeagni, F. elaeidis, F. flocciferum, F. fredkrugeri, F. fujikuroi, F. grosmichelii, F. ipomoeae, F. lactis, F. languescens, F. luffae, F. odoratissimum, F. oxysporum, F. queenslandicum, F. redolens, F. torulosum, F. triseptatum, F. vanleeuwenii, & F. verticillioides), 15 potential species within Fusarium and Neocosmospora species complexes (two from F. fujikuroi species complex, nine from F. oxysporum species complex, three from F. tricinctum species complex, and one from Neocosmospora species complex), and four Neocosmospora spp. (N. falciforme, N. metavorans, N. pisi, & N. solani) and associated host information collected from conifer-producing nurseries across the contiguous USA. RESULTS Phylogenetic analyses identified Fusarioid fungi haplotypes that were associated with 1) host specificity, 2) localization to geographic regions, or 3) generalists found on multiple hosts across diverse geographic regions. DISCUSSION The haplotypes and novel species identified on conifer seedlings should be considered for further analysis to determine pathogenicity, pathogen spread, and assess management practices.
Collapse
Affiliation(s)
- J. T. Dobbs
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| | - M.-S. Kim
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - G. J. Reynolds
- USDA Forest Service, Forest Health Protection – Region 3, Albuquerque, NM, United States
| | - N. Wilhelmi
- USDA Forest Service, Forest Health Protection – Region 3, Flagstaff, AZ, United States
| | - R. K. Dumroese
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID, United States
| | - N. B. Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID, United States
| | - S. W. Fraedrich
- USDA Forest Service, Southern Research Station, Athens, GA, United States
| | - M. M. Cram
- USDA Forest Service, Forest Health Protection – Region 8, Athens, GA, United States
| | - J. Bronson
- USDA Forest Service, Forest Health Protection – Region 6, Medford, OR, United States
| | - J. E. Stewart
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| |
Collapse
|
2
|
Natural Fungicolous Regulators of Biscogniauxia destructiva sp. nov. That Causes Beech Bark Tarcrust in Southern European ( Fagus sylvatica) Forests. Microorganisms 2020; 8:microorganisms8121999. [PMID: 33333832 PMCID: PMC7765258 DOI: 10.3390/microorganisms8121999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Mycoparasites are a collection of fungicolous eukaryotic organisms that occur on and are antagonistic to a wide range of plant pathogenic fungi. To date, this fungal group has largely been neglected by biodiversity studies. However, this fungal group is of interest, as it may contain potential biocontrol agents of pathogenic fungi that cause beech Tarcrust disease (BTC), which has contributed to the devastation of European beech (Fagus sylvatica) forests. Biscogniauxia nummularia has been demonstrated to cause BTC. However, a trophic association between mycoparasites and pathogenic Biscogniauxia spp., has not been established. This study aimed to taxonomically identify and characterize Biscogniauxia, a fungus causing destructive BTC disease in European beech at Lovćen national park, Montenegro and to uncover the diversity of mycopathogens that are natural regulators of xylariaceous Biscogniauxia stroma formation, associated with beech decline. This finding is supported by distinctive phylogenetic and evolutionary characteristics, as well as unique morphological-microscopic fungal features indicating that Biscogniauxia from Montenegro, which is a major cause of BTC occurring in ancient beech forests at the edge of southern Fagus sylvatica distribution, may be described as a novel fungus specific to Fagus. Its evolutionary nuSSU–complete ITS–partial nuLSU rDNA phylogeny indicates its likely emergence by asexual fusion or introgressive hybridization between diverged B. nummularia and B. anceps species. The name Biscogniauxia destructiva is proposed for the novel fungus, as it is aggressive and highly destructive BTC disease.
Collapse
|
3
|
Garcia-Lemos AM, Großkinsky DK, Stokholm MS, Lund OS, Nicolaisen MH, Roitsch TG, Veierskov B, Nybroe O. Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Front Microbiol 2019; 10:1937. [PMID: 31507556 PMCID: PMC6714061 DOI: 10.3389/fmicb.2019.01937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Abies nordmanniana is a major Christmas tree species in Europe, but their uneven and prolonged growth slows down their production. By a 16S and 18S rRNA gene amplicon sequencing approach, we performed a characterization of root-associated bacterial and fungal communities for three-year-old A. nordmanniana plants collected from two nurseries in Denmark and Germany and displaying different growth patterns (small versus tall plants). Proteobacteria had the highest relative abundance at both sampling sites and plant sizes, and Ascomycota was the most abundant fungal phylum. At the order level, Acidobacteriales, Actinomycetales, Burkholderiales, Rhizobiales, and Xanthomonadales represented the bacterial core microbiome of A. nordmanniana, independently of the sampling site or plant size, while the fungal core microbiome included members of the Agaricales, Hypocreales, and Pezizales. Principal Coordinate Analysis indicated that both bacterial and fungal communities clustered according to the sampling site pointing to the significance of soil characteristics and climatic conditions for the composition of root-associated microbial communities. Major differences between communities from tall and small plants were a dominance of the potential pathogen Fusarium (Hypocreales) in the small plants from Germany, while Agaricales, that includes reported beneficial ectomycorrhizal fungi, dominated in the tall plants. An evaluation of plant root antioxidative enzyme profiles showed higher levels of the antioxidative enzymes ascorbate peroxidase, peroxidase, and superoxide dismutase in small plants compared to tall plants. We suggest that the higher antioxidative enzyme activities combined with the growth arrest phenotype indicate higher oxidative stress levels in the small plants. Additionally, the correlations between the relative abundances of specific taxa of the microbiome with the plant antioxidative enzyme profiles were established. The main result was that many more bacterial taxa correlated positively than negatively with one or more antioxidative enzyme activity. This may suggest that the ability of bacteria to increase plant antioxidative enzyme defenses is widespread.
Collapse
Affiliation(s)
- Adriana M. Garcia-Lemos
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michaela S. Stokholm
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole S. Lund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas G. Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bjarke Veierskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Wagner K, Krause K, Gallegos-Monterrosa R, Sammer D, Kovács ÁT, Kothe E. The Ectomycorrhizospheric Habitat of Norway Spruce and Tricholoma vaccinum: Promotion of Plant Growth and Fitness by a Rich Microorganismic Community. Front Microbiol 2019; 10:307. [PMID: 30842767 PMCID: PMC6391851 DOI: 10.3389/fmicb.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
The contribution of the mycorrhizospheric microbes in a stand of ectomycorrhizal Norway spruce (Picea abies) featuring mycorrhiza with the basidiomycete Tricholoma vaccinum was addressed by microbiome analysis and in vitro reconstruction of microbial as well as plant-microbe interactions. The protective role of the mycorrhizal fungus with respect to pathogen attack could be validated against Botrytis cinerea and Heterobasidion annosum in co-cultures revealing reduced pathogen growth, higher survival rate of the spruce trees and reduced symptoms on needles upon symbiosis with T. vaccinum. The community structure was shown to yield a high diversity in ECM forming basidiomycetes of Thelephorales and Agaricales associated with a rich bacterial diversity dominated by Rhizobiales with the most abundant Nitrobacter winogradski (3.9%). Isolated bacteria were then used to address plant growth promoting abilities, which included production of the phytohormone indole-3-acetic acid (performed by 74% of the bacterial isolates), siderophores (22%), and phosphate mobilization (23%). Among the isolates, mycorrhiza helper bacteria (MHB) were identified, with Bacillus cereus MRZ-1 inducing hyperbranching in T. vaccinum, supporting tree germination, shoot elongation, and root formation as well as higher mycorrhization rates. Thus, a huge pool of potential MHB and fungal community with widely distributed auxin-production potential extended the ability of T. vaccinum to form ectomycorrhiza. The forest community profited from the mycorrhizal fungus T. vaccinum, with spruce survival enhanced by 33% in microcosms using soil from the native habitat. A higher fungal abundance and diversity in cases where the tree had died during the experiment, showing that decomposition of plant litter from a dead tree supported a different community. T. vaccinum thus actively structured the community of microorganisms in its habitat.
Collapse
Affiliation(s)
- Katharina Wagner
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Katrin Krause
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ramses Gallegos-Monterrosa
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Dominik Sammer
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Romão-Dumaresq AS, Dourado MN, Fávaro LCDL, Mendes R, Ferreira A, Araújo WL. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant. PLoS One 2016; 11:e0158974. [PMID: 27415014 PMCID: PMC4944904 DOI: 10.1371/journal.pone.0158974] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community's structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in the roots where it formed a dense mycelial cover and was able to penetrate the intercellular spaces of the root epidermis upper layers. The ability of T. virens to colonize plant roots suggests a potential for protecting plant health, inhibiting pathogens or inducing systemic resistance.
Collapse
Affiliation(s)
- Aline Silva Romão-Dumaresq
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
| | - Manuella Nóbrega Dourado
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Léia Cecilia de Lima Fávaro
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, Distrito Federal, Brazil
| | - Rodrigo Mendes
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Anderson Ferreira
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agrosilvopastoral, Sinop, Mato Grosso, Brazil
| | - Welington Luiz Araújo
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World J Microbiol Biotechnol 2016; 32:95. [DOI: 10.1007/s11274-016-2051-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/12/2016] [Indexed: 12/30/2022]
|
7
|
Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils. Fungal Biol 2016; 120:862-72. [PMID: 27268246 DOI: 10.1016/j.funbio.2016.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p < 0.05). The addition of Fol changed the community structure, particularly in soil A, where Penicillium spp. and Fusarium spp. were the dominant responding fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol.
Collapse
|
8
|
Kernaghan G. Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis 2013. [DOI: 10.1007/s13199-013-0265-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou J, Wang N. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME JOURNAL 2011; 6:363-83. [PMID: 21796220 DOI: 10.1038/ismej.2011.100] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The diversity and stability of bacterial communities present in the rhizosphere heavily influence soil and plant quality and ecosystem sustainability. The goal of this study is to understand how 'Candidatus Liberibacter asiaticus' (known to cause Huanglongbing, HLB) influences the structure and functional potential of microbial communities associated with the citrus rhizosphere. Clone library sequencing and taxon/group-specific quantitative real-time PCR results showed that 'Ca. L. asiaticus' infection restructured the native microbial community associated with citrus rhizosphere. Within the bacterial community, phylum Proteobacteria with various genera typically known as successful rhizosphere colonizers were significantly greater in clone libraries from healthy samples, whereas phylum Acidobacteria, Actinobacteria and Firmicutes, typically more dominant in the bulk soil were higher in 'Ca. L. asiaticus'-infected samples. A comprehensive functional microarray GeoChip 3.0 was used to determine the effects of 'Ca. L. asiaticus' infection on the functional diversity of rhizosphere microbial communities. GeoChip analysis showed that HLB disease has significant effects on various functional guilds of bacteria. Many genes involved in key ecological processes such as nitrogen cycling, carbon fixation, phosphorus utilization, metal homeostasis and resistance were significantly greater in healthy than in the 'Ca. L. asiaticus'-infected citrus rhizosphere. Our results showed that the microbial community of the 'Ca. L. asiaticus'-infected citrus rhizosphere has shifted away from using more easily degraded sources of carbon to the more recalcitrant forms. Overall, our study provides evidence that the change in plant physiology mediated by 'Ca. L. asiaticus' infection could elicit shifts in the composition and functional potential of rhizosphere microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability of citrus-producing agro-ecosystems.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lee SH, Kim CG, Kang H. Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. MICROBIAL ECOLOGY 2011; 61:646-659. [PMID: 21128072 DOI: 10.1007/s00248-010-9776-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/05/2010] [Indexed: 05/30/2023]
Abstract
We assessed the temporal dynamics of bacterial and fungal communities in a soil ecosystem supporting genetically modified (GM) rice (Oryza sativa L., ABC-TPSP; fusion of trehalose-6-phosphate synthase and phosphatase). Using terminal restriction fragment length polymorphism analysis and real-time quantitative PCR, we compared bacterial and fungal communities in the soils underlying GM rice (ABC-TPSP), and its host cultivar (Nakdong) during growing seasons and non-growing seasons. Overall, the soils supporting GM and non-GM rice did not differ significantly in diversity indices, including ribotype numbers, for either bacteria or fungi. The diversity index (H) in both the bacterial and fungal communities was correlated with water content, dissolved organic carbon (DOC), and ammonium nitrogen, and the correlation was stronger in fungi than in bacteria. Multivariate analysis showed no differences in microbial community structures between the two crop genotypes, but such differences did appear in time, with significant changes observed after harvest. Gene copy number was estimated as 10(8)~10(11) and 10(5)~10(7) per gram of soil for bacteria and fungi, respectively. As observed for community structure, the rice genotypes did not differ significantly in either bacterial- or fungal-specific gene copy numbers, although we observed a seasonal change in number. We summarize the results of this study as follows. (1) GM rice did not influence soil bacterial and fungal community structures as compared to non-GM rice in our system, (2) both bacterial and fungal communities changed with the growth stage of either rice genotype, (3) fungal communities were less variable than bacterial communities, and (4) although several environmental factors, including ammonium nitrogen and DOC correlated with shifts in microbial community structure, no single factor stood out.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | | | | |
Collapse
|
11
|
Tagawa M, Tamaki H, Manome A, Koyama O, Kamagata Y. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiol Lett 2010; 305:136-42. [PMID: 20653777 DOI: 10.1111/j.1574-6968.2010.01928.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.
Collapse
Affiliation(s)
- Masahiro Tagawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
12
|
Jumpponen A, Jones KL, David Mattox J, Yaege C. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol 2010; 19 Suppl 1:41-53. [PMID: 20331769 DOI: 10.1111/j.1365-294x.2009.04483.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We analysed two sites within and outside an urban development in a rural background to estimate the fungal richness, diversity and community composition in Quercus spp. ectomycorrhizas using massively parallel 454-sequencing in combination with DNA-tagging. Our analyses indicated that shallow sequencing ( approximately 150 sequences) of a large number of samples (192 in total) provided data that allowed identification of seasonal trends within the fungal communities: putative root-associated antagonists and saprobes that were abundant early in the growing season were replaced by common ectomycorrhizal fungi in the course of the growing season. Ordination analyses identified a number of factors that were correlated with the observed communities including host species as well as soil organic matter, nutrient and heavy metal enrichment. Overall, our application of the high throughput 454 sequencing provided an expedient means for characterization of fungal communities.
Collapse
|
13
|
Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG. Diversity of soil and rhizosphere fungi under Araucaria bidwillii (Bunya pine) at an Australian tropical montane rainforest site. FUNGAL DIVERS 2009. [DOI: 10.1007/s13225-009-0001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|