1
|
Poniecka EA, Bagshaw EA, Sass H, Segar A, Webster G, Williamson C, Anesio AM, Tranter M. Physiological Capabilities of Cryoconite Hole Microorganisms. Front Microbiol 2020; 11:1783. [PMID: 32849402 PMCID: PMC7412143 DOI: 10.3389/fmicb.2020.01783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
Cryoconite holes are miniature freshwater aquatic ecosystems that harbor a relatively diverse microbial community. This microbial community can withstand the extreme conditions of the supraglacial environment, including fluctuating temperatures, extreme and varying geochemical conditions and limited nutrients. We analyzed the physiological capabilities of microbial isolates from cryoconite holes from Antarctica, Greenland, and Svalbard in selected environmental conditions: extreme pH, salinity, freeze-thaw and limited carbon sources, to identify their physiological limits. The results suggest that heterotrophic microorganisms in cryoconite holes are well adapted to fast-changing environmental conditions, by surviving multiple freeze-thaw cycles, a wide range of salinity and pH conditions and scavenging a variety of organic substrates. Under oxic and anoxic conditions, the communities grew well in temperatures up to 30°C, although in anoxic conditions the community was more successful at colder temperatures (0.2°C). The most abundant cultivable microorganisms were facultative anaerobic bacteria and yeasts. They grew in salinities up to 10% and in pH ranging from 4 to 10.5 (Antarctica), 2.5 to 10 (Svalbard), and 3 to 10 (Greenland). Their growth was sustained on at least 58 single carbon sources and there was no decrease in viability for some isolates after up to 100 consecutive freeze-thaw cycles. The elevated viability of the anaerobic community in the lowest temperatures indicates they might be key players in winter conditions or in early melt seasons, when the oxygen is potentially depleted due to limited flow of meltwater. Consequently, facultative anaerobic heterotrophs are likely important players in the reactivation of the community after the polar night. This detailed physiological investigation shows that despite inhabiting a freshwater environment, cryoconite microorganisms are able to withstand conditions not typically encountered in freshwater environments (namely high salinities or extreme pH), making them physiologically more similar to arid soil communities. The results also point to a possible resilience of the most abundant microorganisms of cryoconite holes in the face of rapid change regardless of the location.
Collapse
Affiliation(s)
- Ewa A. Poniecka
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Henrik Sass
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
| | - Amelia Segar
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
| | - Gordon Webster
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Xiong L, Jian H, Xiao X. Deep-Sea Bacterium Shewanella piezotolerans WP3 Has Two Dimethyl Sulfoxide Reductases in Distinct Subcellular Locations. Appl Environ Microbiol 2017; 83:e01262-17. [PMID: 28687647 PMCID: PMC5583501 DOI: 10.1128/aem.01262-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/30/2017] [Indexed: 11/20/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) acts as a substantial sink for dimethyl sulfide (DMS) in deep waters and is therefore considered a potential electron acceptor supporting abyssal ecosystems. Shewanella piezotolerans WP3 was isolated from west Pacific deep-sea sediments, and two functional DMSO respiratory subsystems are essential for maximum growth of WP3 under in situ conditions (4°C/20 MPa). However, the relationship between these two subsystems and the electron transport pathway underlying DMSO reduction by WP3 remain unknown. In this study, both DMSO reductases (type I and type VI) in WP3 were found to be functionally independent despite their close evolutionary relationship. Moreover, immunogold labeling of DMSO reductase subunits revealed that the type I DMSO reductase was localized on the outer leaflet of the outer membrane, whereas the type VI DMSO reductase was located within the periplasmic space. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, served as a preferential electron transport protein for the type I and type VI DMSO reductases, in which type VI accepted electrons from CymA in a DmsE- and DmsF-independent manner. Based on these results, we proposed a core electron transport model of DMSO reduction in the deep-sea bacterium S. piezotolerans WP3. These results collectively suggest that the possession of two sets of DMSO reductases with distinct subcellular localizations may be an adaptive strategy for WP3 to achieve maximum DMSO utilization in deep-sea environments.IMPORTANCE As the dominant methylated sulfur compound in deep oceanic water, dimethyl sulfoxide (DMSO) has been suggested to play an important role in the marine biogeochemical cycle of the volatile anti-greenhouse gas dimethyl sulfide (DMS). Two sets of DMSO respiratory systems in the deep-sea bacterium Shewanella piezotolerans WP3 have previously been identified to mediate DMSO reduction under in situ conditions (4°C/20 MPa). Here, we report that the two DMSO reductases (type I and type VI) in WP3 have distinct subcellular localizations, in which type I DMSO reductase is localized to the exterior surface of the outer membrane and type VI DMSO reductase resides in the periplasmic space. A core electron transport model of DMSO reduction in WP3 was constructed based on genetic and physiological data. These results will contribute to a comprehensive understanding of the adaptation mechanisms of anaerobic respiratory systems in benthic microorganisms.
Collapse
Affiliation(s)
- Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Xiong L, Jian H, Zhang Y, Xiao X. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation. Front Microbiol 2016; 7:1418. [PMID: 27656177 PMCID: PMC5013071 DOI: 10.3389/fmicb.2016.01418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/26/2016] [Indexed: 12/04/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling.
Collapse
Affiliation(s)
- Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Yuxia Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
4
|
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 2015; 39:688-728. [PMID: 25994609 DOI: 10.1093/femsre/fuv020] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Karyn L Rogers
- Rensselaer Polytechnic Institute, Earth and Environmental Sciences, Jonsson-Rowland Science Center, 1W19, 110 8th Street, Troy, NY 12180, USA
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee at Knoxville, M409 Walters Life Sciences, Knoxville, TN 37996-0845, USA
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, P.O. Box 55 60, D-78457 Konstanz, Germany
| | - Rudolf K Thauer
- Max Planck Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, Germany
| | - Tori M Hoehler
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035-1000, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Lever MA. Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiol Ecol 2013; 84:1-23. [PMID: 23228016 DOI: 10.1111/1574-6941.12051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/18/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
The vast majority of microbes inhabiting the subseafloor remain uncultivated and their energy sources unknown. Thus, a focus of ocean drilling expeditions over the past decade has been to characterize the distribution of microbes associated with specific metabolic reactions. An important question has been whether microbes involved in key microbial processes, such as sulfate reduction and methanogenesis, differ fundamentally from their counterparts in surface environments. To this end, functional genes of anaerobic methane cycling (mcrA), sulfate reduction (dsrAB), acetogenesis (fhs), and dehalorespiration (rdhA) have been examined. A compilation of existing functional gene data suggests that subseafloor microbes involved in anaerobic methane cycling, sulfate reduction, acetogenesis, and dehalorespiration are not fundamentally different from their counterparts in the surface world. Moreover, quantifications of mcrA and dsrAB suggest that, unless the majority of subseafloor microbes involved in methane cycling and sulfate reduction are too genetically divergent to be detected with conventional methods, these processes only support a small fraction (< 1%) of total microbial biomass in the deep biosphere. Ecological explanations for the observed trends, target processes and methods for future investigations, and strategies for tackling the unresolved issue of microbial contamination in samples obtained by ocean drilling are discussed.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of BioScience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Urbanczyk H, Ast JC, Dunlap PV. Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 2010; 35:324-42. [PMID: 20883503 DOI: 10.1111/j.1574-6976.2010.00250.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Photobacterium comprises several species in Vibrionaceae, a large family of Gram-negative, facultatively aerobic, bacteria that commonly associate with marine animals. Members of the genus are widely distributed in the marine environment and occur in seawater, surfaces, and intestines of marine animals, marine sediments and saline lake water, and light organs of fish. Seven Photobacterium species are luminous via the activity of the lux genes, luxCDABEG. Much recent progress has been made on the phylogeny, genomics, and symbiosis of Photobacterium. Phylogenetic analysis demonstrates a robust separation between Photobacterium and its close relatives, Aliivibrio and Vibrio, and reveals the presence of two well-supported clades. Clade 1 contains luminous and symbiotic species and one species with no luminous members, and Clade 2 contains mostly nonluminous species. The genomes of Photobacterium are similar in size, structure, and organization to other members of Vibrionaceae, with two chromosomes of unequal size and multiple rrn operons. Many species of marine fish form bioluminescent symbioses with three Photobacterium species: Photobacterium kishitanii, Photobacterium leiognathi, and Photobacterium mandapamensis. These associations are highly, but not strictly species specific, and they do not exhibit symbiont-host codivergence. Environmental congruence instead of host selection might explain the patterns of symbiont-host affiliation observed from nature.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan
| | | | | |
Collapse
|
7
|
Gammaproteobacteria occurrence and microdiversity in Tyrrhenian Sea sediments as revealed by cultivation-dependent and -independent approaches. Syst Appl Microbiol 2010; 33:222-31. [PMID: 20413241 DOI: 10.1016/j.syapm.2010.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
Abstract
Bacterial diversity in Tyrrhenian Sea sediments was assessed using cultivation-dependent and -independent approaches. Samples collected from the different sediment layers (up to 30cm) relative to four seamount and non-seamount stations, at depths from 3425 to 3580m, were subjected to DNA extraction and 16S rRNA amplification targeting the V3 region. Denaturing gradient gel electrophoresis (DGGE) showed several heterogeneous profiles and 27 single bands were excised and sequenced. Sequence analysis revealed the presence of Firmicutes, Actinobacteria and Chloroflexi in 26% of the DGGE bands and a predominance of sequences affiliated to cultivable and uncultivable clones of Gammaproteobacteria (55%). To corroborate these findings, cultivation attempts were performed that allowed the isolation of 87 strains assigned to the proteobacterial classes. Identification was achieved by means of automated ribosomal intergenic spacer analysis (ARISA) and by 16S rDNA sequencing. The isolates were related to the gamma, alpha and beta subclasses of Proteobacteria with respective percentages of 77, 17 and 6%. The most predominant Gammaproteobacteria isolates, assigned to the Psychrobacter marincola and P. submarinus clade (n=53) and to Halomonas aquamarina (n=14), showed a huge intraspecific diversity with 29 distinct ARISA haplotypes. The detection by both approaches of these psychrophilic and moderately halophilic species and their extensive microdiversity indicated their predominance in Tyrrhenian Sea sediments where they constituted the indigenous microflora.
Collapse
|
8
|
Sass H, Köpke B, Rütters H, Feuerlein T, Dröge S, Cypionka H, Engelen B. Tateyamaria pelophila sp. nov., a facultatively anaerobic alphaproteobacterium isolated from tidal-flat sediment, and emended descriptions of the genus Tateyamaria and of Tateyamaria omphalii. Int J Syst Evol Microbiol 2009; 60:1770-1777. [PMID: 19749035 DOI: 10.1099/ijs.0.013524-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative motile rod, strain SAM4T, was isolated from the highest positive dilution of a most probable number series inoculated with tidal-flat sediments from the German North Sea coast. The isolate grew at 4-35 degrees C and showed constant growth yields throughout almost the whole temperature range. Growth was observed between pH 6 and 9 and at salinities of 0.3-10.2%. Strain SAM4T required Na+ for growth, contained bacteriochlorophyll a and was catalase- and oxidase-positive. It was nutritionally versatile growing on a variety of carbon compounds including carbohydrates, amino acids and organic acids like lactate or succinate. It grew anaerobically on complex media such as marine broth, indicating fermentation, and by reducing trimethylammonium oxide. The dominant phospholipids were phosphatidylethanolamine and phosphatidylglycerol, whereas only traces of phosphatidylcholine and an unidentified lipid were found. The major fatty acid was n-C18:1omega7c. The DNA G+C content was 56.4 mol%. The isolate was identified as a member of the Roseobacter clade within the class Alphaproteobacteria. However, based on phylogenetic, phenotypic and physiological data, it clearly differs from its closest relative Tateyamaria omphalii. Therefore, a novel species is proposed: Tateyamaria pelophila sp. nov., with strain SAM4T (=DSM 17270T=LMG 23018T) as the type strain. Emended descriptions of the genus Tateyamaria and of Tateyamaria omphalii are also presented.
Collapse
Affiliation(s)
- Henrik Sass
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3YE, Wales, UK.,Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| | - Beate Köpke
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| | - Heike Rütters
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| | - Theresa Feuerlein
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| | - Stefan Dröge
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| | - Heribert Cypionka
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| | - Bert Engelen
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26111 Oldenburg, Germany
| |
Collapse
|
9
|
Freese E, Rütters H, Köster J, Rullkötter J, Sass H. Gammaproteobacteria as a possible source of eicosapentaenoic acid in anoxic intertidal sediments. MICROBIAL ECOLOGY 2009; 57:444-454. [PMID: 18777187 DOI: 10.1007/s00248-008-9443-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Eicosapentaenoic acid (EPA; n-20:5omega3) was found to be a constituent of phospholipids in three mesophilic strains of Gammaproteobacteria, which were isolated from anoxic most probable number series prepared with sediments from an intertidal flat of the German North Sea coast. Their partial 16S rRNA gene sequences identified the isolates as close relatives of Shewanella colwelliana, Vibrio splendidus, and Photobacterium lipolyticum. So far, eicosapentaenoic acid has mainly been reported to occur in eukaryotes and some piezophilic or psychrophilic bacteria. With decreasing temperature, relative contents of EPA (up to 14% of total fatty acids) increased in all strains. Additionally, Shewanella and Vibrio spp. showed a significant increase in monounsaturated fatty acids with lower growth temperature. Analysis of the phospholipid compositions revealed that EPA was present in all three major phospholipid types, namely, phosphatidyl glycerol (PG), cardiolipin and phosphatidyl ethanolamine (PE). However, EPA was enriched in PG and cardiolipin relative to PE. In the tidal flat sediments from which the isolates were obtained, substantial amounts of EPA-containing PG were detected, whereas other typical microeukaryotic phospholipids-being also a possible source of EPA-were abundant at the sediment surface but were present in clearly lower amounts in the anoxic layers beneath 5 cm depth. Therefore, the EPA-containing PG species in the deeper layers in these sediments may indicate the presence of Gammaproteobacteria closely related to the isolates. These bacteria appear to be an important source of EPA in buried, anoxic sediments beneath the layers harboring significant populations of benthic eukaryotes.
Collapse
Affiliation(s)
- Elke Freese
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | | | | | | |
Collapse
|