1
|
Shi HP, Zhao YH, Zheng ML, Gong CY, Yan L, Liu Y, Luo YM, Liu ZP. Arsenic effectively improves the degradation of fluorene by Rhodococcus sp. 2021 under the combined pollution of arsenic and fluorene. CHEMOSPHERE 2024; 353:141635. [PMID: 38447897 DOI: 10.1016/j.chemosphere.2024.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/08/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The performance of bacterial strains in executing degradative functions under the coexistence of heavy metals/heavy metal-like elements and organic contaminants is understudied. In this study, we isolated a fluorene-degrading bacterium, highly arsenic-resistant, designated as strain 2021, from contaminated soil at the abandoned site of an old coking plant. It was identified as a member of the genus Rhodococcus sp. strain 2021 exhibited efficient fluorene-degrading ability under optimal conditions of 400 mg/L fluorene, 30 °C, pH 7.0, and 250 mg/L trivalent arsenic. It was noted that the addition of arsenic could promote the growth of strain 2021 and improve the degradation of fluorene - a phenomenon that has not been described yet. The results further indicated that strain 2021 can oxidize As3+ to As5+; here, approximately 13.1% of As3+ was converted to As5+ after aerobic cultivation for 8 days at 30 °C. The addition of arsenic could greatly up-regulate the expression of arsR/A/B/C/D and pcaG/H gene clusters involved in arsenic resistance and aromatic hydrocarbon degradation; it also aided in maintaining the continuously high expression of cstA that codes for carbon starvation protein and prmA/B that codes for monooxygenase. These results suggest that strain 2021 holds great potential for the bioremediation of environments contaminated by a combination of arsenic and polycyclic aromatic hydrocarbons. This study provides new insights into the interactions among microbes, as well as inorganic and organic pollutants.
Collapse
Affiliation(s)
- Hong-Peng Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ying-Hao Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mei-Lin Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cheng-Yan Gong
- University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Ming Luo
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Liu CJ, Peng YJ, Hu CY, He SX, Xiao SF, Li W, Deng SG, Dai ZH, Ma LQ. Copper enhanced arsenic-accumulation in As-hyperaccumulator Pteris vittata by upregulating its gene expression for As uptake, translocation, and sequestration. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132484. [PMID: 37688872 DOI: 10.1016/j.jhazmat.2023.132484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.
Collapse
Affiliation(s)
- Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Jiang W, Chen R, Lyu J, Qin L, Wang G, Chen X, Wang Y, Yin C, Mao Z. Remediation of the microecological environment of heavy metal-contaminated soil with fulvic acid, improves the quality and yield of apple. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132399. [PMID: 37647659 DOI: 10.1016/j.jhazmat.2023.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.
Collapse
Affiliation(s)
- Weitao Jiang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Ran Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Jinhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Lei Qin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong 250000, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
4
|
Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Appl Environ Microbiol 2021; 87:AEM.02170-20. [PMID: 33097512 DOI: 10.1128/aem.02170-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.
Collapse
|
5
|
Aroua I, Abid G, Souissi F, Mannai K, Nebli H, Hattab S, Borgi Z, Jebara M. Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization. Int Microbiol 2018; 22:111-120. [PMID: 30810937 DOI: 10.1007/s10123-018-0033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
Plant-microbe interactions such as rhizobacteria legumes are interesting in organic farming that has undergone significant expansion in the world. The organic agriculture is as an environment-friendly technique and a sustainable alternative to intensive agricultural system. Three types of soil were chosen, organic (ORG), conventional (CON), and fallow land (NA) to isolate soil bacteria-nodulating Medicago sativa, in order to develop microbial inoculants for use in agricultural sustainable system. Soil analysis revealed significant higher amounts of total nitrogen, organic carbon, total phosphorus, and matter detected in ORG. As for heavy metals, ORG showed high Cu content due to the authorized chemical use in organic farming. A sample of 130 bacteria was isolated from Medicago sativa nodule, genetically characterized by PCR/RFLP of ribosomal 16S RNAs, and a great dominance of Sinorhizobium meliloti (88.4%, 73.8%, and 55.5%) is obtained among NA-, CON-, and ORG-managed soils, respectively. The ORG showed the high bacterial diversity with 13.3% of non-identified strains. The resistance against five pesticides (Prosper, Cuivox, Fungastop, Nimbecidine, and Maneb) revealed a maximum of inhibitory concentration about 10 mg l-1 of Prosper, 12 mg l-1 of Cuivox, 6 ml l-1 of Fungastop, 7.5 ml l-1of Nimbecidine, and 25 ml l-1 of Maneb. The analysis of the symbiotic properties and plant growth-promoting potential revealed two efficient strains significantly increased alfalfa dry weight through producing siderophores, phosphorus, and indole acetic acid (13.6 mg ml-1 and 19.9 mg ml-1 respectively). Hence, we identify two tolerant and efficient strains, Achromobacter spanium and Serratia plymuthica, isolated from Medicago sativa nodule with valuable potential able to phytostabilize pesticide-contaminated soils.
Collapse
Affiliation(s)
- Ibtissem Aroua
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, University of Carthage, BP 901, 2050, Hammam Lif, Tunisia
| | - Ghassen Abid
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, University of Carthage, BP 901, 2050, Hammam Lif, Tunisia
| | - Fatma Souissi
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, University of Carthage, BP 901, 2050, Hammam Lif, Tunisia
| | - Khdiri Mannai
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, University of Carthage, BP 901, 2050, Hammam Lif, Tunisia
| | - Houcem Nebli
- The Technical Center of Organic Agriculture in Chott Meriem, BP 54, 4042, Chott Meriem, Sousse, Tunisia
| | - Sabrine Hattab
- The Regional Center of Research in Horticulture and Organic Agriculture in Chott-Meriem Route Touristique, 4042, Chott Meriem, Tunisia
| | - Ziad Borgi
- The Technical Center of Organic Agriculture in Chott Meriem, BP 54, 4042, Chott Meriem, Sousse, Tunisia
| | - Moez Jebara
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, University of Carthage, BP 901, 2050, Hammam Lif, Tunisia.
| |
Collapse
|
6
|
Fan T, Sun Y, Peng J, Wu Q, Ma Y, Zhou X. Combination of amplified rDNA restriction analysis and high-throughput sequencing revealed the negative effect of colistin sulfate on the diversity of soil microorganisms. Microbiol Res 2017; 206:9-15. [PMID: 29146264 DOI: 10.1016/j.micres.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Colistin sulfate is widely used in both human and veterinary medicine. However, its effect on the microbial ecologyis unknown. In this study, we determined the effect of colistin sulfate on the diversity of soil microorganisms by amplified rDNA restriction analysis (ARDRA) and high-throughput sequencing.ARDRAshowed that the diversity of DNA from soil microorganisms was reduced after soil was treated with colistin sulfate, with the most dramatic reductionobserved after 35days of treatment. High-throughput sequencing showed that the Chao1 and abundance-based coverage estimators (ACE) were reduced in the soils treated with colistin sulfate for 35 dayscompared to those treated with colistin sulfate for 7days. Furthermore, Chao1 and ACE tended to be lower when higher concentration of colistin sulfate was used, suggesting that the microbial abundance is reduced by colistin sulfate in a dose-dependent manner. Shannon index showed that the diversity of soil microorganism was reduced upon treatment with colistin sulfate compared to the untreated control group. Following 7days of treatment, Bacillus, Clostridiumand Sphingomonas were sensitive to all the concentration of colistin sulfate used in this study. Following 35days of treatment, the abundance of Choroplast, Haliangium, Pseudomonas, Lactococcus, and Clostridium was significantly decreased. Our results demonstrated that colistin sulfate especially at high concentration (≥5mg/kg) could alter the population structure of microorganisms and consequently the microbial community function in soil.
Collapse
Affiliation(s)
- Tingli Fan
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China; Department of Animal Husbandry and Veterinary Medicine, Cangzhou Technical College, Cangzhou, 061001, China
| | - Yongxue Sun
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jinju Peng
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qun Wu
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Ma
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xiaohui Zhou
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Liu Y, Zhang Z, Li Y, Wen Y, Fei Y. Response of soil microbial communities to roxarsone pollution along a concentration gradient. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:819-827. [PMID: 28276888 DOI: 10.1080/10934529.2017.1281687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.
Collapse
Affiliation(s)
- Yaci Liu
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
- b Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey , Shijiazhuang, Hebei , China
| | - Zhaoji Zhang
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
| | - Yasong Li
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
- c CSIRO Land and Water , Urrbrae , South Australia , Australia
| | - Yi Wen
- d Department of Water Environmental Planning , Chinese Academy for Environmental Planning , Beijing , China
| | - Yuhong Fei
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
| |
Collapse
|
8
|
Grba N, Krčmar D, Maletić S, Bečelić-Tomin M, Grgić M, Pucar G, Dalmacija B. Organic and inorganic priority substances in sediments of Ludaš Lake, a cross-border natural resource on the Ramsar list. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1938-1952. [PMID: 27798803 DOI: 10.1007/s11356-016-7904-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
For the first time, long-term monitoring (from 2002 to 2014) was carried out of surface sediments in Ludaš Lake, a Ramsar site in northern Serbia. Organic (16 EPA PAHs, mineral oils, selected pesticides and polychlorinated biphenyls (PCBs)) and inorganic substances (eight heavy metals: Ni, Zn, Cd, Cr, Cu, Pb, As and Hg) were continually investigated. Dibenzo[a,h]anthracene (DahA) and fluorene (Flo) were found at levels indicative of causing adverse effects to biota. Diagnostic ratios of specific PAHs were dominated by high molecular weight components, particularly DahA, which contributed 81.78 % of the total high carcinogens, benzo[b]fluoranthene (BbF) and Flo. Potential ecological risk factors (ERi) and the high relative standard deviations (RSD) obtained (up to 245 %) for the parameters monitored confirm the high periodical anthropogenic impact from industry, municipal wastewater and agriculture. The highest concentration of inorganic pollution found was for Cd (440-831 mg/kg) at all sites, Cu (439 mg/kg) in the eastern part of the lake and Cu (388 mg/kg) and Hg (771 mg/kg) in the northern part of the lake. Based on factor analysis of principal component analysis (PCA/FA), As and phenanthrene (Phe) had significant loadings (0.808 and 0.907, respectively). This association of As with organic anthropogenic sources was also confirmed with the sum of PAHs, pyrene (Pyr) and mineral oil by 3D factor plot, corroborating the theory of As mobilization from metal-reducing microbes as organic (methylated) forms, accelerated by phenanthrene. According to EU national and regional data results, this research suggests that Cu, As, dibenzo[a,h]anthracene and Flo should be added to the list of priority pollutants within the context of applying the European Water Framework Directive (WFD).
Collapse
Affiliation(s)
- Nenad Grba
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Dejan Krčmar
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia.
| | - Snežana Maletić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Milena Bečelić-Tomin
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Marko Grgić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Gordana Pucar
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| | - Božo Dalmacija
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovica 3, Novi Sad, 21000, Serbia
| |
Collapse
|
9
|
Fu L, Ruan Y, Tao C, Li R, Shen Q. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Sci Rep 2016; 6:27731. [PMID: 27306096 PMCID: PMC4910074 DOI: 10.1038/srep27731] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/24/2016] [Indexed: 01/25/2023] Open
Abstract
Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.
Collapse
Affiliation(s)
- Lin Fu
- Jiangsu Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yunze Ruan
- Hainan key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Agriculture, Hainan University, Haikou, China
| | - Chengyuan Tao
- Jiangsu Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rong Li
- Jiangsu Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Arsène-Ploetze F, Bertin PN, Carapito C. Proteomic tools to decipher microbial community structure and functioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13599-13612. [PMID: 25475614 PMCID: PMC4560766 DOI: 10.1007/s11356-014-3898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Recent advances in microbial ecology allow studying microorganisms in their environment, without laboratory cultivation, in order to get access to the large uncultivable microbial community. With this aim, environmental proteomics has emerged as an appropriate complementary approach to metagenomics providing information on key players that carry out main metabolic functions and addressing the adaptation capacities of living organisms in situ. In this review, a wide range of proteomic approaches applied to investigate the structure and functioning of microbial communities as well as recent examples of such studies are presented.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique moléculaire, Génomique et Microbiologie, Université de Strasbourg, UMR7156 CNRS, Strasbourg, France,
| | | | | |
Collapse
|
11
|
Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol 2015; 99:8259-69. [DOI: 10.1007/s00253-015-6662-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/24/2022]
|