1
|
Paniagua-López M, Silva-Castro GA, Romero-Freire A, Martín-Peinado FJ, Sierra-Aragón M, García-Romera I. Integrating waste valorization and symbiotic microorganisms for sustainable bioremediation of metal(loid)-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174030. [PMID: 38885698 DOI: 10.1016/j.scitotenv.2024.174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.
Collapse
Affiliation(s)
- Mario Paniagua-López
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain; Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain.
| | - Gloria Andrea Silva-Castro
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Francisco José Martín-Peinado
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Manuel Sierra-Aragón
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Inmaculada García-Romera
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| |
Collapse
|
2
|
Li F, Guo S, Wang S, Zhao M. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. CHEMOSPHERE 2020; 254:126880. [PMID: 32957287 DOI: 10.1016/j.chemosphere.2020.126880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy17:0+cy 19:0)/(16:1ω7+18:1ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Mingyang Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
3
|
García-Sánchez M, Cajthaml T, Filipová A, Tlustoš P, Száková J, García-Romera I. Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:756-765. [PMID: 31284228 DOI: 10.1016/j.jenvman.2019.05.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 05/24/2023]
Abstract
Metal-polluted soils represent hostile environments affecting the composition and functions of soil microbial communities. This study evaluated the implication of combining the mycoremediated dry olive residue (MDOR) amendment application with the inoculation of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae in restoring the quality, composition, and functionality of soil microbial communities. To achieve this aim, a mesocosms experiment was set up that included three variations: i) with and without application of Penicillium chrysogenum-10-transformed MDOR (MDOR_Pc), and Chondrosterum purpureum-transformed MDOR (MDOR_Cp) amendments; ii) with and without F. mosseae inoculation; and iii) 30-day and 60-day soil treatment time. As a result of this combined treatment, changes in the soil labile organic C and N fractions were observed throughout the experiment. Increases in the abundance of phospholipid fatty acids (PLFAs) for bacteria, actinobacteria, and Gram- and Gram+ bacteria were also recorded at the end of the experiment. The addition of MDOR amendments boosted fungal and AM fungi communities. AM fungi root and soil colonization was also enhanced as the result of improvement nutrient turnover and spatial conditions caused by adding MDOR in combination with an inoculation of F. mosseae. The composition and functionality of microbial communities seemed to be an important ecological attribute indicating an apparently fully functional restoration of this metal-polluted soil and therefore suggesting the suitability of the combined MDOR and AM fungus treatment as a reclamation practice.
Collapse
Affiliation(s)
- Mercedes García-Sánchez
- Department of Agro-Environmental Chemistry and Plant Nutrition. Faculty of Agrobiology, Food and Natural Resources, Kamýcká CZ-129 Prague 6, Czech Republic; Institut National de Recherche Agronomique (INRA), UMR Eco & Sols, 2 place Viala, 34060, Montpellier Cedex 2, France.
| | - Tomáš Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnská 1083, CZ-142 20, Prague 4, Czech Republic; Institute of Environmental Studies, Faculty of Science, Charles University. Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Alena Filipová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Videnská 1083, CZ-142 20, Prague 4, Czech Republic; Institute of Environmental Studies, Faculty of Science, Charles University. Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition. Faculty of Agrobiology, Food and Natural Resources, Kamýcká CZ-129 Prague 6, Czech Republic
| | - Jirina Száková
- Department of Agro-Environmental Chemistry and Plant Nutrition. Faculty of Agrobiology, Food and Natural Resources, Kamýcká CZ-129 Prague 6, Czech Republic
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems. Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), C/ Profesor Albareda 1, C.P. 18001, Granada, Spain
| |
Collapse
|
4
|
Effects of Thinning on Microbial Community Structure in the Organic Horizon of Chinese Pine Plantations in Badaling, Beijing, China. FORESTS 2019. [DOI: 10.3390/f10100828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: Moderate thinning can effectively improve forestry production and change the microenvironment of understory vegetation. Background and Objectives: Microbial communities control the decomposition and transformation of forest organic matter; however, the influence of thinning on microbes in the organic horizon remains unclear. Materials and Methods: In this study, we subjected four plots of Chinese pine plantations in Badaling, Beijing to different thinning intensities, including no thinning (T0), low-intensity thinning (T10), medium-intensity thinning (T20), and high-intensity thinning (T50). The changes in chemical properties and microbial community compositions observed in the organic horizon, which comprised undecomposed litter (L layer) and half-decomposed litter (F layer), were analyzed after thinning. Microbial community compositions were evaluated using phospholipid fatty acid (PLFA) methods. Results: The results showed that the abundances of gram-negative bacteria (GN) and total bacteria (B) under the T10 thinning condition were the highest among the four thinning intensities, and the abundance of arbuscular mycorrhizal fungi (AMF) in T20 was higher than under other thinning intensities. The abundance of gram-positive bacteria (GP) and actinobacteria (ACT) in T10 was lower than in both T0 and T50. The abundance of total PLFAs and fungi (FU) was higher in the L layer, whereas the abundance of GP, GN, B, ACT, and AMF was higher in the F layer. Conclusions: Our results demonstrated that the L layer better reflects the influence of thinning on litter. Redundancy analysis (RDA) results indicated that the organic carbon (LOC) , dissolved organic carbon (DOC), and ammonium nitrogen (NH4+-N)contents of litter were primarily responsible for the observed changes in microbial community structure, with LOC alone explaining 62.6% of the total variance among the litter substrate factors selected. Overall, moderate-intensity thinning of Pinus tabulaeformis Carr. plantations created more favorable conditions for microbial communities in the organic horizon.
Collapse
|
5
|
Reina R, García-Sánchez M, Liers C, García-Romera I, Aranda E. An Overview of Fungal Applications in the Valorization of Lignocellulosic Agricultural By-Products: The Case of Two-Phase Olive Mill Wastes. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Peng Z, Zeng D, Wang Q, Niu L, Ni X, Zou F, Yang M, Sun H, Zhou Y, Liu Q, Yin Z, Pan K, Jing B. Decreased microbial diversity and Lactobacillus group in the intestine of geriatric giant pandas (Ailuropoda melanoleuca). World J Microbiol Biotechnol 2016; 32:79. [PMID: 27038949 DOI: 10.1007/s11274-016-2034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/14/2016] [Indexed: 01/19/2023]
Abstract
It has been established beyond doubt that giant panda genome lacks lignin-degrading related enzyme, gastrointestinal microbes may play a vital role in digestion of highly fibrous bamboo diet. However, there is not much information available about the intestinal bacteria composition in captive giant pandas with different ages. In this study, we compared the intestinal bacterial community of 12 captive giant pandas from three different age groups (subadults, adults, and geriatrics) through PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis. Results indicated that microbial diversity in the intestine of adults was significantly higher than that of the geriatrics (p < 0.05), but not significant compared to the subadults (p > 0.05). The predominant bands in DGGE patterns shared by the twelve pandas were related to Firmicutes and Proteobacteria. Additionally, in comparison to healthy individuals, antibiotic-treated animals showed partial microbial dysbiosis. Real-time PCR analyses confirmed a significantly higher abundance of the Lactobacillus in the fecal microbiota of adults (p < 0.05), while other bacterial groups and species detected did not significantly differ among the three age groups (p > 0.05). This study revealed that captive giant pandas with different ages showed different intestinal bacteria composition.
Collapse
Affiliation(s)
- Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Fuqin Zou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingyue Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
7
|
Siles JA, Rachid CTCC, Sampedro I, García-Romera I, Tiedje JM. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS One 2014; 9:e103035. [PMID: 25058610 PMCID: PMC4109964 DOI: 10.1371/journal.pone.0103035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/27/2014] [Indexed: 01/18/2023] Open
Abstract
The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR), a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR) and C. floccosa-transformed DOR (CORDOR) on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR.
Collapse
Affiliation(s)
- José A. Siles
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| | - Caio T. C. C. Rachid
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Inmaculada Sampedro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|