1
|
Li J, Liu C, Wang S, Mao X. Staphylococcus aureus enters viable-but-nonculturable state in response to chitooligosaccharide stress by altering metabolic pattern and transmembrane transport function. Carbohydr Polym 2024; 330:121772. [PMID: 38368090 DOI: 10.1016/j.carbpol.2023.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
Although chitooligosaccharide (COS) has attracted the attention of some researchers due to its good solubility and broad-spectrum antibacterial activity, our study found that Staphylococcus aureus treated with low concentration of COS actively entered the viable-but-nonculturable (VBNC) state to resist this environmental stress. In this study, the transcriptome of VBNC-state S. aureus after COS treatment was analyzed by RNA-sequencing. Compared with the control group, pathway enrichment analysis showed that COS-treated S. aureus adopted a series of adaptive adjustment strategies for survival, including significant up-regulation of the differential genes' expression of such as ABC transporters (metI, tagG), Sec dependent transport pathway (secDF), peptidoglycan synthesis pathway (murG) and alteration of their physiological metabolic patterns, where ATP depletion played a key role in the formation of the VBNC-state S. aureus. Further, by using oxidative phosphorylation uncoupling agent to adjust the initial level of ATP in S. aureus, it was found that the reduction of intracellular ATP level could accelerate the formation of VBNC state. Overall, our results preliminarily elucidated the molecular mechanism of COS inducing the VBNC-state S. aureus. It provided an important theoretical reference for further achieving effective bacterial inactivation by COS.
Collapse
Affiliation(s)
- Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
Barbe V, Jacquin J, Bouzon M, Wolinski A, Derippe G, Cheng J, Cruaud C, Roche D, Fouteau S, Petit JL, Conan P, Pujo-Pay M, Bruzaud S, Ghiglione JF. Bioplastic degradation and assimilation processes by a novel bacterium isolated from the marine plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133573. [PMID: 38306834 DOI: 10.1016/j.jhazmat.2024.133573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Biosourced and biodegradable plastics offer a promising solution to reduce environmental impacts of plastics for specific applications. Here, we report a novel bacterium named Alteromonas plasticoclasticus MED1 isolated from the marine plastisphere that forms biofilms on foils of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Experiments of degradation halo, plastic matrix weight loss, bacterial oxygen consumption and heterotrophic biosynthetic activity showed that the bacterial isolate MED1 is able to degrade PHBV and to use it as carbon and energy source. The likely entire metabolic pathway specifically expressed by this bacterium grown on PHBV matrices was shown by further genomic and transcriptomic analysis. In addition to a gene coding for a probable secreted depolymerase, a gene cluster was located that encodes characteristic enzymes involved in the complete depolymerization of PHBV, the transport of oligomers, and in the conversion of the monomers into intermediates of central carbon metabolism. The transcriptomic experiments showed the activation of the glyoxylate shunt during PHBV degradation, setting the isocitrate dehydrogenase activity as regulated branching point of the carbon flow entering the tricarboxylic acid cycle. Our study also shows the potential of exploring the natural plastisphere to discover new bacteria with promising metabolic capabilities.
Collapse
Affiliation(s)
- Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Justine Jacquin
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Adèle Wolinski
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Gabrielle Derippe
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France; Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, UMR CNRS 6027, Rue Saint Maudé, Lorient, France
| | - Jingguang Cheng
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pascal Conan
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Mireille Pujo-Pay
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, UMR CNRS 6027, Rue Saint Maudé, Lorient, France
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France.
| |
Collapse
|
3
|
Gundogdu K, Orus Iturriza A, Orruño M, Montánchez I, Eguiraun H, Martinez I, Arana I, Kaberdin VR. Addressing the Joint Impact of Temperature and pH on Vibrio harveyi Adaptation in the Time of Climate Change. Microorganisms 2023; 11:microorganisms11041075. [PMID: 37110498 PMCID: PMC10142252 DOI: 10.3390/microorganisms11041075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Global warming and acidification of the global ocean are two important manifestations of the ongoing climate change. To characterize their joint impact on Vibrio adaptation and fitness, we analyzed the temperature-dependent adaptation of Vibrio harveyi at different pHs (7.0, 7.5, 8.0, 8.3 and 8.5) that mimic the pH of the world ocean in the past, present and future. Comparison of V. harveyi growth at 20, 25 and 30 °C show that higher temperature per se facilitates the logarithmic growth of V. harveyi in nutrient-rich environments in a pH-dependent manner. Further survival tests carried out in artificial seawater for 35 days revealed that cell culturability declined significantly upon incubation at 25 °C and 30 °C but not at 20 °C. Moreover, although acidification displayed a negative impact on cell culturability at 25 °C, it appeared to play a minor role at 30 °C, suggesting that elevated temperature, rather than pH, was the key player in the observed reduction of cell culturability. In addition, analyses of the stressed cell morphology and size distribution by epifluorescent microscopy indicates that V. harveyi likely exploits different adaptation strategies (e.g., acquisition of coccoid-like morphology) whose roles might differ depending on the temperature-pH combination.
Collapse
Affiliation(s)
- Kaan Gundogdu
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Ander Orus Iturriza
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Harkaitz Eguiraun
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- Department of Graphic Design & Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Prosdocimi EM, Arioli S, Mapelli F, Zeaiter Z, Fusi M, Daffonchio D, Borin S, Crotti E. Cell phenotype changes and oxidative stress response in Vibrio spp. induced into viable but non-culturable (VBNC) state. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-022-01703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Purpose
Aquatic bacteria of the genus Vibrio include animal and human pathogens. The occurrence of Vibrio-related diseases has been associated with the current climate change-driven increase of sea surface temperature. Vibrio spp. can enter into the viable but non-culturable (VBNC) state, as a consequence of starvation in seawater at low temperatures. In such physiological state, Vibrio cells are no longer culturable on standard media agar plates but can resuscitate if incubated at 30 °C prior to plating, retaining virulence. Since limited information is available on regards to this topic, in this work, we characterized the phenotypic changes of four Vibrio spp. strains (one laboratory strain and three environmental isolates) in cold seawater microcosms, investigating the relationship between resuscitation and a hydrogen peroxide-induced oxidative stress.
Methods
Cell phenotypic changes and the effect of hydrogen peroxide and/or catalase addition to the medium were studied on VBNC and resuscitated cells by flow cytometry in microcosm experiments, paralleled by culturability experiments by plating.
Results
The cells of all the Vibrio strains changed their phenotype upon the induction of the VBNC state resulting in cell dwarfing and decrease in DNA quantity, losing the ability to grow on solid media. These features were partially or totally reverted when the cells were treated for resuscitation. Hydrogen peroxide at concentrations as low as 0.007 mM prevented resuscitation and a prolonged exposure to hydrogen peroxide at concentrations far under those inhibiting the growth of log-phase cells permanently damaged VBNC cells, which could not be resuscitated. However, the potential of culturability of VBNC cells could be preserved, at least for a part of the population, by plating the cells in the presence of catalase. The study also showed that during the resuscitation process, the cells gradually increased their resistance to hydrogen peroxide.
Conclusions
The timing and mode of induction of the VBNC state, as well as cell resuscitation and response to hydrogen peroxide, differed among Vibrio strains, indicating that induction and resuscitation from dormancy could vary in the context of species belonging to a single genus.
Collapse
|
5
|
Proteome Expression and Survival Strategies of a Proteorhodopsin-Containing Vibrio Strain under Carbon and Nitrogen Limitation. mSystems 2022; 7:e0126321. [PMID: 35384695 PMCID: PMC9040609 DOI: 10.1128/msystems.01263-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Photoheterotrophy is a widespread mode of microbial metabolism, notably in the oligotrophic surface ocean, where microbes experience chronic nutrient limitation. One especially widespread form of photoheterotrophy is based on proteorhodopsin (PR), which uses light to generate proton motive force that can drive ATP synthesis, flagellar movement, or nutrient uptake. To clarify the physiological benefits conferred by PR under nutrient stress conditions, we quantified protein-level gene expression of Vibrio campbellii CAIM 519 under both carbon and nitrogen limitation and under both light and dark conditions. Using a novel membrane proteomics strategy, we determined that PR expression is higher under C limitation than N limitation but is not light regulated. Despite expression of PR photosystems, V. campbellii does not exhibit any growth or survival advantages in the light and only a few proteins show significant expression differences between light and dark conditions. While protein-level proteorhodopsin expression in V. campbellii is clearly responsive to nutrient limitation, photoheterotrophy does not appear to play a central role in the survival physiology of this organism under these nutrient stress conditions. C limitation and N limitation, however, result in very different survival responses: under N-limited conditions, viability declines, cultivability is lost rapidly, central carbon flux through the Entner-Doudoroff pathway is increased, and ammonium is assimilated via the GS-GOGAT pathway. In contrast, C limitation drives cell dwarfing with maintenance of viability, as well as utilization of the glyoxylate shunt, glutamate dehydrogenase and anaplerotic C fixation, and a stringent response mediated by the Pho regulon. IMPORTANCE Understanding the nutrient stress responses of proteorhodopsin-bearing microbes like Vibrio campbellii yields insights into microbial contributions to nutrient cycling, lifestyles of emerging pathogens in aquatic environments, and protein-level adaptations implemented during times of nutrient limitation. In addition to its broad taxonomic and geographic prevalence, the physiological role of PR is diverse, so we developed a novel proteomics strategy to quantify its expression at the protein level. We found that proteorhodopsin expression levels in this wild-type photoheterotroph under these experimental conditions, while higher under C than under N limitation, do not afford measurable light-driven growth or survival advantages. Additionally, this work links differential protein expression patterns between C- and N-limited cultures to divergent stationary-phase survival phenotypes.
Collapse
|
6
|
Allen C, Finkel SE. Vibrio harveyi Exhibits the Growth Advantage in Stationary Phase Phenotype during Long-Term Incubation. Microbiol Spectr 2022; 10:e0214421. [PMID: 35080444 PMCID: PMC8791185 DOI: 10.1128/spectrum.02144-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022] Open
Abstract
The bioluminescent marine bacterium Vibrio harveyi can exist within a host, acting as a mutualist or a parasitic microbe, and as planktonic cells in open seawater. This study demonstrates the ability of V. harveyi populations to survive and adapt under nutrient stress conditions in the laboratory, starting in an initially rich medium. V. harveyi populations remain viable into long-term stationary phase, for at least 1 month, without the addition of nutrients. To determine whether these communities are dynamic, populations were sampled after 10, 20, and 30 days of incubation and examined for their competitive ability when cocultured with an unaged, parental population. While populations incubated for 10 or 20 days showed some fitness advantage over parental populations, only after 30 days of incubation did all populations examined outcompete parental populations in coculture, fully expressing the growth advantage in stationary phase (GASP) phenotype. The ability to express GASP, in the absence of additional nutrients after inoculation, verifies the dynamism of long-term stationary-phase V. harveyi populations, implies the ability to generate genetic diversity, and demonstrates the plasticity of the V. harveyi genome, allowing for rapid adaptation for survival in changing culture environments. Despite the dynamism, the adaptation to the changing culture environment occurs less rapidly than in Escherichia coli, possibly due to Vibrio harveyi's lower mutation frequency. IMPORTANCE Vibrio harveyi populations exist in many different niches within the ocean environment, as free-living cells, symbionts with particular squid and fish species, and parasites to other marine organisms. It is important to understand V. harveyi's ability to survive and evolve within each of these niches. This study focuses on V. harveyi's lifestyle outside the host environment, demonstrating this microbe's ability to survive long-term culturing after inoculation in an initially rich medium and revealing increased competitive fitness correlated with incubation time when aged V. harveyi populations are cocultured with unaged, parental cultures. Thus, this study highlights the development of the growth advantage in stationary phase (GASP) phenotype in V. harveyi populations suggesting a dynamic population with fluctuating genotype frequencies throughout long-term, host-independent incubation.
Collapse
Affiliation(s)
- Calista Allen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
7
|
Bunse C, Koch H, Breider S, Simon M, Wietz M. Sweet spheres: succession and CAZyme expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Environ Microbiol 2021; 23:3130-3148. [PMID: 33876546 DOI: 10.1111/1462-2920.15536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.
Collapse
Affiliation(s)
- Carina Bunse
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sven Breider
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Orruño M, Parada C, Kaberdin VR, Arana I. The Effect of Visible Light on Cell Envelope Subproteome during Vibrio harveyi Survival at 20 °C in Seawater. Microorganisms 2021; 9:microorganisms9030594. [PMID: 33805730 PMCID: PMC8001661 DOI: 10.3390/microorganisms9030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
A number of Vibrio spp. belong to the well-studied model organisms used to understand the strategies developed by marine bacteria to cope with adverse conditions (starvation, suboptimal temperature, solar radiation, etc.) in their natural environments. Temperature and nutrient availability are considered to be the key factors that influence Vibrio harveyi physiology, morphology, and persistence in aquatic systems. In contrast to the well-studied effects of temperature and starvation on Vibrio survival, little is known about the impact of visible light able to cause photooxidative stress. Here we employ V. harveyi ATCC 14126T as a model organism to analyze and compare the survival patterns and changes in the protein composition of its cell envelope during the long-term permanence of this bacterium in seawater microcosm at 20 °C in the presence and absence of illumination with visible light. We found that V. harveyi exposure to visible light reduces cell culturability likely inducing the entry into the Viable but Non Culturable state (VBNC), whereas populations maintained in darkness remained culturable for at least 21 days. Despite these differences, the starved cells in both populations underwent morphological changes by reducing their size. Moreover, further proteomic analysis revealed a number of changes in the composition of cell envelope potentially accountable for the different adaptation pattern manifested in the absence and presence of visible light.
Collapse
Affiliation(s)
- Maite Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| | - Claudia Parada
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
| | - Vladimir R. Kaberdin
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48340 Leioa, Spain; (M.O.); (C.P.); (V.R.K.)
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
- Correspondence:
| |
Collapse
|
9
|
Starvation-Dependent Inhibition of the Hydrocarbon Degrader Marinobacter sp. TT1 by a Chemical Dispersant. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During marine oil spills, chemical dispersants are used routinely to disperse surface slicks, transferring the hydrocarbon constituents of oil into the aqueous phase. Nonetheless, a comprehensive understanding of how dispersants affect natural populations of hydrocarbon-degrading bacteria, particularly under environmentally relevant conditions, is lacking. We investigated the impacts of the dispersant Corexit EC9500A on the marine hydrocarbon degrader Marinobacter sp. TT1 when pre-adapted to either low n-hexadecane concentrations (starved culture) or high n-hexadecane concentrations (well-fed culture). The growth of previously starved cells was inhibited when exposed to the dispersant, as evidenced by 55% lower cell numbers and 30% lower n-hexadecane biodegradation efficiency compared to cells grown on n-hexadecane alone. Cultures that were well-fed did not exhibit dispersant-induced inhibition of growth or n-hexadecane degradation. In addition, fluorescence microscopy revealed amorphous cell aggregate structures when the starved culture was exposed to dispersants, suggesting that Corexit affected the biofilm formation behavior of starved cells. Our findings indicate that (previous) substrate limitation, resembling oligotrophic open ocean conditions, can impact the response and hydrocarbon-degrading activities of oil-degrading organisms when exposed to Corexit, and highlight the need for further work to better understand the implications of environmental stressors on oil biodegradation and microbial community dynamics.
Collapse
|
10
|
Montánchez I, Kaberdin VR. Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104850. [PMID: 32056705 DOI: 10.1016/j.marenvres.2019.104850] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Here we briefly review the major characteristics of the emerging pathogen Vibrio harveyi and discuss survival strategies and adaptation mechanisms underlying the capacity of this marine bacterium to thrive in natural and artificial aquatic settings. Recent studies suggest that some adaptation mechanisms can easily be acquired by V. harveyi and other members of the Vibrionaceae family owing to efficient horizontal gene transfer and elevated mutation rate. While discussing the main factors in charge of the expansion of Vibrio spp. habitats and concomitant spread of Vibrio-associated diseases under climate change, this review highlights the need for future studies able to address the joint impact of environmental and anthropogenic factors on the long-term dynamics and virulence of V. harveyi populations at the global scale.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain.
| |
Collapse
|
11
|
Kohyama Y, Suzuki S. Conjugative Gene Transfer between Nourished and Starved Cells of Photobacterium damselae ssp. damselae and Escherichia coli. Microbes Environ 2019; 34:388-392. [PMID: 31631079 PMCID: PMC6934395 DOI: 10.1264/jsme2.me19099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Horizontal gene transfer (HGT) between bacteria with different habitats and nutritional requirements is important for the spread of antibiotic resistance genes (ARG). The objective of the present study was to clarify the effects of organic matter on HGT between nourished and starved bacteria. We demonstrated that conjugation ability is affected by the nutritional conditions of the cell and environment. A filter mating HGT experiment was performed using Photobacterium damselae ssp. damselae, strain 04Ya311, a marine-origin bacterium possessing the multidrug-resistance plasmid pAQU1, as the donor, and Escherichia coli as the recipient. The donor and recipient were both prepared as nutrient-rich cultured and starved cells. Filter mating was performed on agar plates with and without organic nutrients. The transcription of the plasmid-borne genes tet(M) and traI was quantitated under eutrophic and oligotrophic conditions. The donor P. damselae transferred the plasmid to E. coli at a transfer rate of 10−4 under oligotrophic and eutrophic conditions. However, when the donor was starved, HGT was not detected under oligotrophic conditions. The addition of organic matter to starved cells restored conjugative HGT even after 6 d of starvation. The transcription of traI was not detected in starved cells, but was restored upon the addition of organic matter. The HGT rate appears to be affected by the transcription of plasmid-associated genes. The present results suggest that the HGT rate is low in starved donors under oligotrophic conditions, but is restored by the addition of organic matter.
Collapse
Affiliation(s)
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
12
|
Individual Physiological Adaptations Enable Selected Bacterial Taxa To Prevail during Long-Term Incubations. Appl Environ Microbiol 2019; 85:AEM.00825-19. [PMID: 31152013 DOI: 10.1128/aem.00825-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incubation itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were combined to evaluate bacterial communities derived from marine, mesohaline, and oligohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic carbon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the manipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacterium Spongiibacter In the oligohaline enclosures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously described grazing resistance, may enable the gammaproteobacterium Spongiibacter to prevail in long-time incubations. Under oligohaline conditions, the utilization of external recalcitrant carbon appeared to be more important (hgc-I). Enclosure experiments with complex natural microbial communities are important tools to investigate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.IMPORTANCE In microbial ecology, enclosure studies are often used to investigate the effect of single environmental factors on complex bacterial communities. However, in addition to the manipulation, unintended effects ("bottle effect") may occur due to the enclosure itself. In this study, we analyzed the bacterial communities that originated from three different salinities of the Baltic Sea, comparing their compositions and physiological activities both at the early stage and after 55 days of incubation. Our results suggested that internal carbon storage strategies impact the success of certain bacterial species, independent of the experimental manipulation. Thus, while enclosure experiments remain valid tools in environmental research, microbial community composition shifts must be critically followed. This investigation of the metaproteome during long-term batch enclosures expanded our current understanding of the so-called "bottle effect," which is well known to occur during enclosure experiments.
Collapse
|
13
|
Montánchez I, Ogayar E, Plágaro AH, Esteve-Codina A, Gómez-Garrido J, Orruño M, Arana I, Kaberdin VR. Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated temperature provides insights into the putative mechanisms of its persistence and spread in the time of global warming. Sci Rep 2019; 9:289. [PMID: 30670759 PMCID: PMC6343004 DOI: 10.1038/s41598-018-36483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Discovering the means to control the increasing dissemination of pathogenic vibrios driven by recent climate change is challenged by the limited knowledge of the mechanisms in charge of Vibrio spp. persistence and spread in the time of global warming. To learn about physiological and gene expression patterns associated with the long-term persistence of V. harveyi at elevated temperatures, we studied adaptation of this marine bacterium in seawater microcosms at 30 °C which closely mimicked the upper limit of sea surface temperatures around the globe. We found that nearly 90% of cells lost their culturability and became partly damaged after two weeks, thus suggesting a negative impact of the combined action of elevated temperature and shortage of carbon on V. harveyi survival. Moreover, further gene expression analysis revealed that major adaptive mechanisms were poorly coordinated and apparently could not sustain cell fitness. On the other hand, elevated temperature and starvation promoted expression of many virulence genes, thus potentially reinforcing the pathogenicity of this organism. These findings suggest that the increase in disease outbreaks caused by V. harveyi under rising sea surface temperatures may not reflect higher cell fitness, but rather an increase in virulence enabling V. harveyi to escape from adverse environments to nutrient rich, host-pathogen associations.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Elixabet Ogayar
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain. .,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain. .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
14
|
Plágaro AH, Pearman PB, Kaberdin VR. Defining the transcription landscape of the Gram-negative marine bacterium Vibrio harveyi. Genomics 2018; 111:1547-1556. [PMID: 30423347 DOI: 10.1016/j.ygeno.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Vibrio harveyi is a Gram-negative pathogenic bacterium ubiquitously present in natural aquatic systems. Although environmental adaptability in V. harveyi may be enabled by profound reprogramming of gene expression previously observed during responses to starvation, suboptimal temperatures and other stress factors, the key characteristics of V. harveyi transcripts and operons, such as their boundaries and size as well as location of small RNA genes, remain largely unknown. To reveal the main features of the V. harveyi transcriptome, total RNA of this organism was analyzed by differential RNA sequencing (dRNA-seq). Analysis of the dRNA-seq data made it possible to define the primary transcriptome of V. harveyi along with cis-acting regulatory elements (riboswitches and leader sequences) and new genes. The latter encode a number of putative polypeptides and new phylogenetically conserved antisense RNAs potentially involved in the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
| | - Peter B Pearman
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain.
| |
Collapse
|
15
|
Wasai S, Kanno N, Matsuura K, Haruta S. Increase of Salt Tolerance in Carbon-Starved Cells of Rhodopseudomonas palustris Depending on Photosynthesis or Respiration. Microorganisms 2018; 6:microorganisms6010004. [PMID: 29316629 PMCID: PMC5874618 DOI: 10.3390/microorganisms6010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022] Open
Abstract
Bacteria in natural environments are frequently exposed to nutrient starvation and survive against environmental stresses under non-growing conditions. In order to determine the energetic influence on survivability during starvation, changes in salt tolerance were investigated using the purple photosynthetic bacterium Rhodopseudomonas palustris after carbon starvation under photosynthetic conditions in comparison with anaerobic and aerobic dark conditions. Tolerance to a treatment with high concentration of salt (2.5 M NaCl for 1 h) was largely increased after starvation under anaerobically light and aerobically dark conditions. The starved cells under the conditions of photosynthesis or aerobic respiration contained high levels of cellular ATP, but starvation under the anaerobic dark conditions resulted in a decrease of cellular ATP contents. To observe the large increase of the salt tolerance, incubation of starved cells for more than 18 h under illumination was needed. These results suggest that the ATP-dependent rearrangement of cells induced salt tolerance.
Collapse
Affiliation(s)
- Sawa Wasai
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Nanako Kanno
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
16
|
Orruño M, Kaberdin VR, Arana I. Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments. World J Microbiol Biotechnol 2017; 33:45. [PMID: 28161849 DOI: 10.1007/s11274-017-2218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
In their natural ecosystems, bacteria are continuously exposed to changing environmental factors including physicochemical parameters (e.g. temperature, pH, etc.), availability of nutrients as well as interaction(s) with other organisms. To increase their tolerance and survival under adverse conditions, bacteria trigger a number of adaptation mechanisms. One of the well-known adaptation responses of the non-spore-forming bacteria is the acquisition of the viable but non-culturable (VBNC) state. This phenotype is induced by different stress factors (e.g. low temperature) and is characterized by the temporal loss of culturability, which can potentially be restored. Moreover, this response can be combined with the bust and boom strategy, which implies the death of the main population of the stressed cells (or their entry into the VBNC state) upon stress, thus enabling the remaining cells (i.e. residual culturable population) to subsist at the expense of the dead or/and VBNC cells. In this review, we discuss the characteristics of the VBNC state, its biological significance and contribution to bacterial survival.
Collapse
Affiliation(s)
- M Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain
| | - V R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - I Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain.
| |
Collapse
|
17
|
Parada C, Orruño M, Kaberdin V, Bravo Z, Barcina I, Arana I. Changes in the Vibrio harveyi Cell Envelope Subproteome During Permanence in Cold Seawater. MICROBIAL ECOLOGY 2016; 72:549-558. [PMID: 27324654 DOI: 10.1007/s00248-016-0802-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Previous work demonstrated that physiological, morphological, and gene expression changes as well as the time-dependent entry into the viable but not culturable (VBNC) state are used by Vibrio species to survive and cope with diverse stress conditions including seasonal temperature downshifts and starvation. To learn more about the nature and specific contribution of membrane proteins to cell adaptation and survival, we analyzed variations in the protein composition of cell envelope and related them to morphological and physiological changes that were taking place during the long-term permanence of Vibrio harveyi in seawater microcosm at 4 °C. We found that after 21 days of permanence, nearly all population (ca. 99 %) of V. harveyi acquired the VBNC phenotype. Although the size of V. harveyi cells gradually decreased during the incubation time, we found that this morphological change was not directly related to their entry into the VBNC state. Our proteomic study revealed that the level of membrane proteins playing key roles in cellular transport, maintenance of cell structure, and in bioenergetics processes remained unchanged along starvation at low temperature, thus suggesting that V. harveyi might need these proteins for the long-term survival and/or for the resuscitation process. On a contrary, the level of two proteins, elongation factor Tu (EF-TU) and bacterioferritin, greatly increased reaching the maximal values by the end of the incubation period. We further discuss the above data with respect to the putative roles likely exerted by membrane proteins during transition to and maintaining of the VBNC state.
Collapse
Affiliation(s)
- Claudia Parada
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Vladimir Kaberdin
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Zaloa Bravo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Barcina
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
18
|
Bergkessel M, Basta DW, Newman DK. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 2016; 14:549-62. [PMID: 27510862 PMCID: PMC10069271 DOI: 10.1038/nrmicro.2016.107] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives.
Collapse
|
19
|
Ruiz-Larrabeiti O, Plágaro AH, Gracia C, Sevillano E, Gallego L, Hajnsdorf E, Kaberdin VR. A new custom microarray for sRNA profiling in Escherichia coli. FEMS Microbiol Lett 2016; 363:fnw131. [PMID: 27190161 DOI: 10.1093/femsle/fnw131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play essential roles in the post-transcriptional control of gene expression. To improve their detection by conventional microarrays, we designed a custom microarray containing a group of probes targeting known and some putative Escherichia coli sRNAs. To assess its potential in detection of sRNAs, RNA profiling experiments were performed with total RNA extracted from E. coli MG1655 cells exponentially grown in rich (Luria-Bertani) and minimal (M9/glucose) media. We found that many sRNAs could yield reasonably strong and statistically significant signals corresponding to nearly all sRNAs annotated in the EcoCyc database. Besides differential expression of two sRNAs (GcvB and RydB), expression of other sRNAs was less affected by the composition of the growth media. Other examples of the differentially expressed sRNAs were revealed by comparing gene expression of the wild-type strain and its isogenic mutant lacking functional poly(A) polymerase I (pcnB). Further, northern blot analysis was employed to validate these data and to assess the existence of new putative sRNAs. Our results suggest that the use of custom microarrays with improved capacities for detection of sRNAs can offer an attractive opportunity for efficient gene expression profiling of sRNAs and their target mRNAs at the whole transcriptome level.
Collapse
Affiliation(s)
- Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Celine Gracia
- CNRS UMR8261 (previously FRE3630), University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Lucía Gallego
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630), University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|