1
|
Belkin P, Nechaeva Y, Blinov S, Vaganov S, Perevoshchikov R, Plotnikova E. Sediment microbial communities of a technogenic saline-alkaline reservoir. Heliyon 2024; 10:e33640. [PMID: 39071596 PMCID: PMC11283119 DOI: 10.1016/j.heliyon.2024.e33640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Various natural saline and alkaline habitats have recently been widely investigated, but knowledge of anthropogenic habitats with more complex environmental conditions is still lacking. This research looks at the structure of microbial communities in 18 bottom sediment samples from a technogenic water body with saline and alkaline composition. The core samples were collected from 2 columns in the western and eastern parts of an artificial water body at the Verkhnekamskoe Salt Deposit (Russia). The microbial community structure was studied using high-throughput 16S rRNA gene sequencing. The bottom sediment composition (salinity, pH, and toxic element content) varies greatly with depth and laterally throughout the study area. The study found a considerable difference in bacterial community diversity between the 2 columns, but no considerable difference was found between the communities at various depths of the studied layers. Proteobacteria, Firmicutes, and Actinobacteria, which are common in both natural and artificial saline and alkaline environments, make up the majority of the bacteria found in the samples. Studies have shown that salinity and total alkalinity are the key factors influencing the formation of microbial communities. Ralstonia and Pseudomonas were the two most common genera in the sediment samples. These two genera are known for having high metabolic flexibility, which means they can survive in extreme environments and use a variety of carbon compounds as energy sources. The study also found that Ralstonia is indicator bacteria in samples with the highest concentrations of toxic elements compared to the other samples. A relatively high microbial diversity was discovered in the studied anthropogenic water reservoir despite the extreme alkaline and saline conditions, but it is considerably lower than that found in natural, less alkaline habitats. This research offers insight into the mechanisms behind microbial community formation in complex anthropogenic environments and covers key factors in microbial community distribution.
Collapse
Affiliation(s)
- Pavel Belkin
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Yulia Nechaeva
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| | - Sergey Blinov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Sergey Vaganov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Roman Perevoshchikov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Elena Plotnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| |
Collapse
|
2
|
Pellegrinetti TA, Cotta SR, Feitosa YB, Melo PLA, Bieluczyk W, Silva AMM, Mendes LW, Sarmento H, Camargo PB, Tsai SM, Fiore MF. The role of microbial communities in biogeochemical cycles and greenhouse gas emissions within tropical soda lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174646. [PMID: 38986696 DOI: 10.1016/j.scitotenv.2024.174646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.
Collapse
Affiliation(s)
- Thierry A Pellegrinetti
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil.
| | - Simone R Cotta
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Yara B Feitosa
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Paul L A Melo
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Wanderlei Bieluczyk
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Antonio M M Silva
- University of São Paulo (USP), "Luiz de Queiroz" College of Agriculture, Soil Science Department, Piracicaba, São Paulo 13418-900, Brazil
| | - Lucas W Mendes
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Hugo Sarmento
- Federal University of São Carlos (UFSCar), Department of Hydrobiology, São Carlos, São Paulo 13565-905, Brazil
| | - Plinio B Camargo
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Siu M Tsai
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil
| | - Marli F Fiore
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Avenida Centenário 303, Piracicaba, São Paulo 13416-000, Brazil.
| |
Collapse
|
3
|
Kipnyargis A, Kenya E, Khamis F, Mwirichia R. Spatiotemporal structure and composition of the microbial communities in hypersaline Lake Magadi, Kenya. F1000Res 2024; 13:11. [PMID: 39534657 PMCID: PMC11555362 DOI: 10.12688/f1000research.134465.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Soda lakes are habitats characterized by haloalkaline conditions also known to host unique microbial communities. The water chemistry changes with seasons due to evaporative concentration or floods from the surrounding grounds. However, it is not yet clear if the change in physiochemical changes influences the spatiotemporal diversity and structure of microbial communities in these ecosystems. Methods Using 16S rRNA gene amplicon sequencing, we investigated the diversity and structure of microbial communities in water and brine samples taken from Lake Magadi between June and September 2018. Additionally, physicochemical parameters were also analyzed for every sampling site. Additionally, physicochemical parameters were also analyzed for every sampling site. Results The abundant bacterial phyla were Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Verrumicrobia, Deinococcus-Thermus, Spirochaetes, and Chloroflexi. The Archaeal diversity was represented by phyla Euryachaeota, Crenarchaeota, Euryarchaeota, and Thaumarchaeota. The dominant bacterial species were: Euhalothece sp. (10.3%), Rhodobaca sp. (9.6%), Idiomarina sp. (5.8%), Rhodothermus sp. (3.0%), Roseinatronobacter sp. (2.4%), Nocardioides sp. (2.3%), Gracilimonas sp. (2.2%), and Halomonas sp. (2%). The dominant archaeal species included Halorubrum sp. (18.3%), Salinarchaeum sp. (5.3%), and Haloterrigena sp. (1.3%). The composition of bacteria was higher than that of archaea, while their richness and diversity varied widely across the sampling seasons. The α-diversity indices showed that high diversity was recorded in August, followed by September, June, and July in that order. The findings demonstrated that temperature, pH, P+, K+, NO3 -, and total dissolved solids (TDS) contributed majorly to the diversity observed in the microbial community. Multivariate analysis revealed significant spatial and temporal effects on β-diversity and salinity and alkalinity were the major drivers of microbial composition in Lake Magadi. Conclusions We provide insights into the relationships between microbial structure and geochemistry across various sampling sites in Lake Magadi.
Collapse
Affiliation(s)
- Alex Kipnyargis
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Eucharia Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Fathiya Khamis
- Arthropod Pathology, International Centre of Insect Physiology and Ecology, Nairobi, Nairobi County, Kenya
| | - Romano Mwirichia
- Department of Biological Sciences, University of Embu, Embu, Kenya
| |
Collapse
|
4
|
Liu YH, Gao L, Jiang HC, Fang BZ, Huang Y, Li L, Li S, Abdugheni R, Lian WH, Zhang JY, Yang ZD, Mohamad OAA, Li WJ. Response of microbial diversity and function to the degradation of Barkol Saline Lake. Front Microbiol 2024; 15:1358222. [PMID: 38784797 PMCID: PMC11111964 DOI: 10.3389/fmicb.2024.1358222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The Pseudomonadota was dominant in Barkol Saline Lake. The abundance of Desulfobacterota and Bacillota in the degraded areas was lower than in the lake sediment, while Pseudomonadota, Acidobacteriota, and Actinobacteriota showed an opposite trend. The βNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.
Collapse
Affiliation(s)
- Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hong-Chen Jiang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shuai Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Dong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Arish, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Tilahun L, Asrat A, Wessel GM, Simachew A. Ancestors in the Extreme: A Genomics View of Microbial Diversity in Hypersaline Aquatic Environments. Results Probl Cell Differ 2024; 71:185-212. [PMID: 37996679 DOI: 10.1007/978-3-031-37936-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The origin of eukaryotic cells, and especially naturally occurring syncytial cells, remains debatable. While a majority of our biomedical research focuses on the eukaryotic result of evolution, our data remain limiting on the prokaryotic precursors of these cells. This is particularly evident when considering extremophile biology, especially in how the genomes of organisms in extreme environments must have evolved and adapted to unique habitats. Might these rapidly diversifying organisms have created new genetic tools eventually used to enhance the evolution of the eukaryotic single nuclear or syncytial cells? Many organisms are capable of surviving, or even thriving, in conditions of extreme temperature, acidity, organic composition, and then rapidly adapt to yet new conditions. This study identified organisms found in extremes of salinity. A lake and a nearby pond in the Ethiopian Rift Valley were interrogated for life by sequencing the DNA of populations of organism collected from the water in these sites. Remarkably, a vast diversity of microbes were identified, and even though the two sites were nearby each other, the populations of organisms were distinctly different. Since these microbes are capable of living in what for humans would be inhospitable conditions, the DNA sequences identified should inform the next step in these investigations; what new gene families, or modifications to common genes, do these organisms employ to survive in these extreme conditions. The relationship between organisms and their environment can be revealed by decoding genomes of organisms living in extreme environments. These genomes disclose new biological mechanisms that enable life outside moderate environmental conditions, new gene functions for application in biotechnology, and may even result in identification of new species. In this study, we have collected samples from two hypersaline sites in the Danakil depression, the shorelines of Lake As'ale and an actively mixing salt pond called Muda'ara (MUP), to identify the microbial community by metagenomics. Shotgun sequencing was applied to high density sampling, and the relative abundance of Operational Taxonomic Units (OTUs) was calculated. Despite the broad taxonomic similarities among the salt-saturated metagenomes analyzed, MUP stood out from Lake As'ale samples. In each sample site, Archaea accounted for 95% of the total OTUs, largely to the class Halobacteria. The remaining 5% of organisms were eubacteria, with an unclassified strain of Salinibacter ruber as the dominant OTU in both the Lake and the Pond. More than 40 different genes coding for stress proteins were identified in the three sample sites of Lake As'ale, and more than 50% of the predicted stress-related genes were associated with oxidative stress response proteins. Chaperone proteins (DnaK, DnaJ, GrpE, and ClpB) were predicted, with percentage of query coverage and similarities ranging between 9.5% and 99.2%. Long reads for ClpB homologous protein from Lake As'ale metagenome datasets were modeled, and compact 3D structures were generated. Considering the extreme environmental conditions of the Danakil depression, this metagenomics dataset can add and complement other studies on unique gene functions on stress response mechanisms of thriving bio-communities that could have contributed to cellular changes leading to single and/or multinucleated eukaryotic cells.
Collapse
Affiliation(s)
- Lulit Tilahun
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Xie Z, Li Y, Xiong K, Tu Z, Waiho K, Yang C, Deng Y, Li S, K H Fang J, Hu M, Dupont S, Wang Y. Combined effect of salinity and hypoxia on digestive enzymes and intestinal microbiota in the oyster Crassostrea hongkongensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121921. [PMID: 37263564 DOI: 10.1016/j.envpol.2023.121921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis. Specifically, we sequenced 16 S rRNA of intestinal microbiota and measured the digestive enzymes trypsin (TRS), lipase (LPS) and amylase (AMY) in oysters exposed for 28 days to three salinities (10, 25 and 35) and two dissolved oxygen conditions, normoxia (6 mg/L) and hypoxia (6 mg/L for 12 h, 2 mg/L for 12 h). Oysters in normoxia and salinity of 25 were treated as control. After 28-day exposure, for microbial components, Fusobacteriota, Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota comprised the majority for all experimental groups. Compared with the control group, the diversity and structure of intestinal microbiota tended to change in all treated groups. The species richness in C. hongkongensis intestine also changed. It was the most significant that high salinity increased Proteobacteria proportion while low salinity and hypoxia increased Fusobacteriota but decreased Proteobacteria, respectively. Additionally, Actinobacteriota was sensitive and changed under environmental stressor (P < 0.01). The prediction results on intestinal microbiota showed that, all functions of oysters were up-regulated to distinct degrees under low/high salinity with hypoxia. According to the KEGG prediction, cellular processes were more active and energy metabolism upregulated, indicating the adaptation of C. hongkongensis to environmental change. Periodical hypoxia and low/high salinity had complex effect on the digestive enzymes, in which the activity of TRS and LPS decreased while AMY increased. High/low salinity and periodical hypoxia can change the secretion of digestive enzymes and influence intestinal microbial diversity and species richness of C. hongkongensis, deducing the chronic adverse effects on the digestive physiology in long-term exposure.
Collapse
Affiliation(s)
- Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuting Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Xiong
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, 21030, Malaysia
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Saishuai Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Sam Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, 45178, Fiskebäckskil, Sweden; International Atomic Energy Agency, Environment Laboratories, 98000, Principality of Monaco, Monaco
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Liu YH, Mohamad OAA, Gao L, Xie YG, Abdugheni R, Huang Y, Li L, Fang BZ, Li WJ. Sediment prokaryotic microbial community and potential biogeochemical cycle from saline lakes shaped by habitat. Microbiol Res 2023; 270:127342. [PMID: 36848700 DOI: 10.1016/j.micres.2023.127342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
The microbial diversity and ecological function in different saline lakes was reduced or disappeared as the influence of climate change and human activities even before they were known. However, reports about prokaryotic microbial of saline lakes from Xinjiang are very limited especially in large-scale investigations. In this study, a total of 6 saline lakes represented three different habitats, including hypersaline lake (HSL), arid saline lake (ASL), and light saltwater lake (LSL) were involved. The distribution pattern and potential functions of prokaryotes were investigated by using the cultivation-independent method of amplicon sequencing. The results showed that Proteobacteria was the predominant community and was widely distributed in all kinds of saline lakes, Desulfobacterota was the representative community in hypersaline lakes, Firmicutes and Acidobacteriota were mainly distributed in arid saline lake samples, and Chloroflexi was more abundant in light saltwater lakes. Specifically, the archaeal community was mainly distributed in the HSL and ASL samples, whereas it was very rare in the LSL lakes. The functional group showed that fermentation was the main metabolic process of microbes in all saline lakes and covered 8 phyla, including Actinobacteriota, Bacteroidota, Desulfobacterota, Firmicutes, Halanaerobiaeota, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Among the 15 functional phyla, Proteobacteria was a distinctly important community in saline lakes, as it exhibited wide functions in the biogeochemical cycle. According to the correlation of environmental factors, SO42-, Na+, CO32-, and TN were significantly affected in the microbial community from saline lakes in this study. Overall, our study provided more detailed information about microbial community composition and distribution from three different habitats of saline lakes, especially the potential functions of carbon, nitrogen, and sulfur cycles, which provided new insight for understanding the complex microbiota adapt to the extreme environment and new perspectives on evaluating microbial contributions to degraded saline lakes under environmental change.
Collapse
Affiliation(s)
- Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, PR China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yuan-Guo Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
8
|
Jeilu O, Gessesse A, Simachew A, Johansson E, Alexandersson E. Prokaryotic and eukaryotic microbial diversity from three soda lakes in the East African Rift Valley determined by amplicon sequencing. Front Microbiol 2022; 13:999876. [PMID: 36569062 PMCID: PMC9772273 DOI: 10.3389/fmicb.2022.999876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Soda lakes are unique poly-extreme environments with high alkalinity and salinity that support diverse microbial communities despite their extreme nature. In this study, prokaryotic and eukaryotic microbial diversity in samples of the three soda lakes, Lake Abijata, Lake Chitu and Lake Shala in the East African Rift Valley, were determined using amplicon sequencing. Culture-independent analysis showed higher diversity of prokaryotic and eukaryotic microbial communities in all three soda lakes than previously reported. A total of 3,603 prokaryotic and 898 eukaryotic operational taxonomic units (OTUs) were found through culture-independent amplicon sequencing, whereas only 134 bacterial OTUs, which correspond to 3%, were obtained by enrichment cultures. This shows that only a fraction of the microorganisms from these habitats can be cultured under laboratory conditions. Of the three soda lakes, samples from Lake Chitu showed the highest prokaryotic diversity, while samples from Lake Shala showed the lowest diversity. Pseudomonadota (Halomonas), Bacillota (Bacillus, Clostridia), Bacteroidota (Bacteroides), Euryarchaeota (Thermoplasmata, Thermococci, Methanomicrobia, Halobacter), and Nanoarchaeota (Woesearchaeia) were the most common prokaryotic microbes in the three soda lakes. A high diversity of eukaryotic organisms were identified, primarily represented by Ascomycota and Basidiomycota. Compared to the other two lakes, a higher number of eukaryotic OTUs were found in Lake Abijata. The present study showed that these unique habitats harbour diverse microbial genetic resources with possible use in biotechnological applications, which should be further investigated by functional metagenomics.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
9
|
Ali Y, Simachew A, Gessesse A. Diversity of Culturable Alkaliphilic Nitrogen-Fixing Bacteria from a Soda Lake in the East African Rift Valley. Microorganisms 2022; 10:microorganisms10091760. [PMID: 36144362 PMCID: PMC9501543 DOI: 10.3390/microorganisms10091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lake Chitu is a highly productive soda lake found in the East African Rift Valley, where Arthrospira fusiformis (Spirulina platensis) is the main primary producer. High biomass accumulation requires an adequate supply of nitrogen. However, Lake Chitu is a closed system without any external nutrient input. A recent study has also demonstrated the presence of a diverse group of denitrifying bacteria, indicating a possible loss of nitrate released from the oxidation of organic matter. The aim of this study was to isolate culturable nitrogen-fixing alkaliphiles and evaluate their potential contribution in the nitrogen economy of the soda lake. A total of 118 alkaliphiles belonging to nine different operational taxonomic units (OTUs) were isolated using a nitrogen-free medium. Nineteen isolates were tested for the presence of the nifH gene, and 11 were positive. The ability to fix nitrogen was tested by co-culturing with a non-nitrogen-fixing alkaliphile, Alkalibacterium sp. 3.5*R1. When inoculated alone, Alkalibacterium sp. 3.5*R1 failed to grow on a nitrogen-free medium, but grew very well when co-cultured with the nitrogen-fixing alkaliphile NF10m6 isolated in this study, indicating the availability of nitrogen. These results show that nitrogen fixation by alkaliphiles may have an important contribution as a source of nitrogen in soda lakes.
Collapse
Affiliation(s)
- Yordanos Ali
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Industrial Biotechnology Research Directorate, Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
- Correspondence: ; Tel.: +267-4931871
| |
Collapse
|
10
|
Plant growth-promoting characteristics of halotolerant endophytic bacteria isolated from Sporobolus specatus (Vahr) Kunth and Cyperus laevigatus L. of Ethiopian rift valley lakes. Arch Microbiol 2022; 204:403. [PMID: 35723754 DOI: 10.1007/s00203-022-03021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
Abstract
Understanding plant microbes' intimate relationship and search for beneficial microbes is a sustainable alternative to improve plant growth and yield under a wide range of biotic and abiotic stress conditions. More than 20% of the total global agricultural land is affected by salinity. High salinity challenges crop plants by affecting several metabolic pathways and decreasing plant growth and yield. Unlike chemical fertilizers and pesticides, endophytic microbes offer an eco-friendly approach to increasing crop yield via various metabolites during salinity stress. The objective of this study was to isolate and characterize endophytic halotolerant bacterial isolates from haloalkaliphytes, investigate their plant growth-promoting (PGP) properties and tolerance for various stress conditions. Sporobolus specatus (Vahr) Kunth and Cyperus laevigatus L. grass samples were collected from the shores of two Ethiopian soda lakes (Lakes Abijata, and Chitu, respectively). A total of 167 halotolerant endophytic bacterial isolates, that clustered into 21 ARDRA (Amplified ribosomal DNA restriction analysis) groups, affiliated to members of 11 bacterial genera, namely Halomonas, Agrobacterium, Exiguobacterium, Jonesia, Stenotrophomonas, Pseudomonas, Alishewanella, Kosakonia, Bacillus, Paracoccus and Pannonibacter, were identified based on 16S rRNA sequencing. Most of the strains were able to produce IAA (indole-3-acetic acid) and hydrogen cyanide, grow on a nitrogen-free medium and solubilize phosphate. In vitro tolerance tests reveal that isolates were tolerant to: 5.0-15% NaCl, up to 40% PEG 6000, temperatures up to 50 °C, and pH 5-11. These characteristics of the isolates indicate their potential PGP application under various plant stress conditions.
Collapse
|
11
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
12
|
Doğan SŞ, Kocabaş A. Metagenomic Assessment of Prokaryotic Diversity within Hypersaline Tuz Lake, Turkey. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Diversity of actinobacteria in sediments of Qaidam Lake and Qinghai Lake, China. Arch Microbiol 2021; 203:2875-2885. [PMID: 33751173 DOI: 10.1007/s00203-021-02277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Using 16S rRNA gene analysis and high-throughput, the diversity and community structure of actinobacteria in the sediments of Qaidam Lake and Qinghai Lake with different salinity and alkalinity in Qinghai-Xizang Plateau were studied, and the differences of actinobacteria community structure and their relationship with environmental factors were discussed. A total of 77 genera belonging to actinobacteria were found in the samples, of which 31 genera were found in the sediment samples of Qaidam Lake with 19 genera being dominant genera, such as Actinomycetes, Corynebacterium, Morella, Bifidobacterium, and 69 genera were found in the sediment samples of Qinghai Lake with 17 genera becoming dominant, such as Ilumattalaer, Actinotalea, Aquihaans and so on. The correlation analysis of environmental factors and community showed that the community structure of the two salt lakes was mainly affected by total salinity, total organic carbon) (TOC) and CO32-, among which TOC was the most influential factor. The functional differences of metabolic pathway enrichment analysis (KEGG) showed that there was a high abundance of metabolic-related functions in the two salt lakes. There were significant differences in the biosynthesis of energy metabolism and other secondary metabolites between the two salt lakes, which may be the main reason for the difference of actinomycete community. The results show that the actinobacteria diversity was rich in the plateau salt lakes, and affected by a variety of physicochemical factors. In addition, there were a large number of unculturable actinobacteria in the sediment, which provides a theoretical basis for the excavation and utilization of actinobacteria resources in salt lakes.
Collapse
|
14
|
The Impact of Air Pollution on Intestinal Microbiome of Asthmatic Children: A Panel Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5753427. [PMID: 33204702 PMCID: PMC7661118 DOI: 10.1155/2020/5753427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Air pollution could impact on the alteration of intestinal microbiome. Maturation of intestinal microbiome in early life played an important role in the development of allergic diseases, including asthma. Recent studies presented an increase in the evidence of association between the shift of gut microbiota and asthma. This article is aimed at exploring whether the alteration in the intestinal microbiome triggered by a short wave of air pollution could influence the colonization of bacteria that have been related to the immunological mechanisms of the asthma attack. The impact of air pollution on intestinal microbiome was assessed by longitudinal comparison. Fecal samples were collected twice for twenty-one children in clean and smog days, respectively, including eleven asthmatic children and ten healthy children. Intestinal bacteria were discriminated by using the method of 16S rRNA gene sequence. The results showed that the composition of intestinal microbiome changed between clean and smog days among all children (PERMANOVA, P = 0.03). During smog days, Bifidobacteriaceae, Erysipelotrichaceae, and Clostridium sensu stricto 1 decreased, and Streptococcaceae, Porphyromonadaceae, Rikenellaceae, Bacteroidales S24-7 group, and Bacteroides increased in asthmatic children (Wilcoxon test, P < 0.05), while Fusicatenibacter decreased and Rikenellaceae and Terrisporobacter increased in healthy children (Wilcoxon test, P < 0.05). After controlling for food consumption, the relative abundance of some bacteria belonging to Firmicutes negatively associated with concentration of PM2.5, PM10, NO2, and SO2 (multiple linear regression, P < 0.05). This study demonstrated that short wave of air pollution had an impact on the intestinal microbiome of asthmatic children. Intestinal bacteria, which have been related to immunological mechanisms of asthma attack, were also found to be associated with air pollution. This finding suggested that a short wave of air pollution may trigger asthma by impacting on intestinal bacteria.
Collapse
|
15
|
Abstract
The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Mani K, Taib N, Hugoni M, Bronner G, Bragança JM, Debroas D. Transient Dynamics of Archaea and Bacteria in Sediments and Brine Across a Salinity Gradient in a Solar Saltern of Goa, India. Front Microbiol 2020; 11:1891. [PMID: 33013726 PMCID: PMC7461921 DOI: 10.3389/fmicb.2020.01891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/20/2020] [Indexed: 11/26/2022] Open
Abstract
The microbial fluctuations along an increasing salinity gradient during two different salt production phases – initial salt harvesting (ISH) phase and peak salt harvesting (PSH) phase of Siridao solar salterns in Goa, India were examined through high-throughput sequencing of 16S rRNA genes on Illumina MiSeq platform. Elemental analysis of the brine samples showed high concentration of sodium (Na+) and chloride (Cl–) ions thereby indicating its thalassohaline nature. Comparison of relative abundance of sequences revealed that Archaea transited from sediment to brine while Bacteria transited from brine to sediment with increasing salinity. Frequency of Archaea was found to be significantly enriched even in low and moderate salinity sediments with their relative sequence abundance reaching as high as 85%. Euryarchaeota was found to be the dominant archaeal phylum containing 19 and 17 genera in sediments and brine, respectively. Phylotypes belonging to Halorubrum, Haloarcula, Halorhabdus, and Haloplanus were common in both sediments and brine. Occurence of Halobacterium and Natronomonas were exclusive to sediments while Halonotius was exclusive to brine. Among sediments, relative sequence frequency of Halorubrum, and Halorhabdus decreased while Haloarcula, Haloplanus, and Natronomonas increased with increasing salinity. Similarly, the relative abundance of Haloarcula and Halorubrum increased with increasing salinity in brine. Sediments and brine samples harbored about 20 and 17 bacterial phyla, respectively. Bacteroidetes, Proteobacteria, and Chloroflexi were the common bacterial phyla in both sediments and brine while Firmicutes were dominant albeit in sediments alone. Further, Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria were observed to be the abundant class within the Proteobacteria. Among the bacterial genera, phylotypes belonging to Rubricoccus and Halomonas were widely detected in both brine and sediment while Thioalkalispira, Desulfovermiculus, and Marinobacter were selectively present in sediments. This study suggests that Bacteria are more susceptible to salinity fluctuations than Archaea, with many bacterial genera being compartment and phase-specific. Our study further indicated that Archaea rather than Bacteria could withstand the wide salinity fluctuation and attain a stable community structure within a short time-frame.
Collapse
Affiliation(s)
- Kabilan Mani
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Zuarinagar, India.,Center for Molecular Medicine & Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Najwa Taib
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Gisele Bronner
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Judith M Bragança
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Zuarinagar, India
| | - Didier Debroas
- UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
17
|
Zhao D, Zhang S, Xue Q, Chen J, Zhou J, Cheng F, Li M, Zhu Y, Yu H, Hu S, Zheng Y, Liu S, Xiang H. Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia. Front Microbiol 2020; 11:1740. [PMID: 32793172 PMCID: PMC7393216 DOI: 10.3389/fmicb.2020.01740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soda-saline lakes are a special type of alkaline lake in which the chloride concentration is greater than the carbonate/bicarbonate concentration. Due to the high pH and a usually higher osmotic pressure than that of a normal soda lake, the microbes may need more energy to thrive in such a double-extreme environment. In this study, we systematically investigated the microbiome of the brine and sediment samples of nine artificially separated ponds (salinities from 5.5% to saturation) within two soda-saline lakes in Inner Mongolia of China, assisted by deep metagenomic sequencing. The main inorganic ions shaped the microbial community in both the brines and sediments, and the chloride concentration exhibited the most significant effect. A total of 385 metagenome-assembled genomes (MAGs) were generated, in which 38 MAGs were revealed as the abundant species in at least one of the eighteen different samples. Interestingly, these abundant species also represented the most branches of the microbiome of the soda-saline lakes at the phylum level. These abundant taxa were close relatives of microorganisms from classic soda lakes and neutral saline environments, but forming a combination of both habitats. Notably, approximately half of the abundant MAGs had the potential to drive dissimilatory sulfur cycling. These MAGs included four autotrophic Ectothiorhodospiraceae MAGs, one Cyanobacteria MAG and nine heterotrophic MAGs with the potential to oxidize sulfur, as well as four abundant MAGs containing genes for elemental sulfur respiration. The possible reason is that reductive sulfur compounds could provide additional energy for the related species, and reductions of oxidative sulfur compounds are more prone to occur under alkaline conditions which support the sulfur cycling. In addition, a unique 1,4-alpha-glucan phosphorylation pathway, but not a normal hydrolysis one, was found in the abundant Candidatus Nanohaloarchaeota MAG NHA-1, which would produce more energy in polysaccharide degradation. In summary, this work has revealed the abundant taxa and favorable pathways in the soda-saline lakes, indicating that efficient energy regeneration pathway may increase the capacity for environmental adaptation in such saline-alkaline environments. These findings may help to elucidate the relationship between microbial metabolism and adaptation to extreme environments.
Collapse
Affiliation(s)
- Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China. PLoS One 2020; 15:e0236006. [PMID: 32649724 PMCID: PMC7351256 DOI: 10.1371/journal.pone.0236006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Halophiles are relatively unexplored as potential sources of novel species.
However, little is known about the culturable bacterial diversity thrive in
hypersaline lakes. In this work, a total of 343 bacteria from sediment samples
of Aiding Lake, China, were isolated using nine different media supplemented
with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria
recovered from the different media varied, indicating the need to optimize the
isolation conditions. The results showed an unexpected level of bacterial
diversity, with four phyla (Actinobacteria,
Firmicutes, Proteobacteria, and
Rhodothermaeota), fourteen orders
(Actinopolysporales, Alteromonadales,
Bacillales, Balneolales,
Chromatiales, Glycomycetales,
Jiangellales, Micrococcales,
Micromonosporales, Oceanospirillales,
Pseudonocardiales, Rhizobiales,
Streptomycetales, and
Streptosporangiales), including 17 families, 43 genera
(including two novel genera), and 71 species (including four novel species). The
predominant phyla included Actinobacteria and Firmicutes and the predominant
genera included Actinopolyspora,
Gracilibacillus, Halomonas,
Nocardiopsis, and Streptomyces. To our
knowledge, this is the first time that members of phylum
Rhodothermaeota were identified in sediment samples from a
salt lake.
Collapse
|
19
|
Liu YH, Xie YG, Li L, Jiang HC, Mohamad OAA, Hozzein W, Fang BZ, Li WJ. Cyclobacterium salsum sp. nov. and Cyclobacterium roseum sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 2020; 70:3785-3793. [PMID: 32463784 DOI: 10.1099/ijsem.0.004237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel strains, designated SYSU L10167T and SYSU L10180T, were isolated from sediment sampled at Dabancheng saline lake in Xinjiang, PR China. A polyphasic approach was used to clarify the taxonomic positions of the two strains. Cells of the isolates were curved ring-like, horseshoe-shaped or rod-shaped, non-motile and non-spore-forming. Cells were Gram-stain-negative, aerobic, heterotrophic and rose-pigmented. The phylogenetic trees based on 16S rRNA gene sequences showed that strains SYSU L10167T and SYSU L10180T formed a distinct lineage within the genus Cyclobacterium. Strains SYSU L10167T and SYSU L10180T showed highest similarities to Cyclobacterium jeungdonense KCTC 23150T (98.0 and 97.4%, respectively). Results of genomic analyses (including average nucleotide identity, digital DNA-DNA hybridization and the marker gene tree) and pan-genome analysis further confirmed that strains SYSU L10167T and SYSU L10180T were separate from each other and other species of the genus Cyclobacterium. The draft genomes of the isolates had sizes of 5.5-5.7 Mb and reflected their major physiological capabilities. Based on phenotypic, physiological, chemotaxonomic and genotypic characterization, we propose that the isolates represent two novel species, for which the names Cyclobacterium salsum sp. nov. and Cyclobacterium roseum sp. nov. are proposed. The type strains of the species are SYSU L10167T (=KCTC 72390T=CGMCC 1.17521T) and SYSU L10180T (=KCTC 72391T=CGMCC 1.17278T).
Collapse
Affiliation(s)
- Yong-Hong Liu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yuan-Guo Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Osama Abdalla Abdelshafy Mohamad
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wael Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.,Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
20
|
Pan HW, Du LT, Li W, Yang YM, Zhang Y, Wang CX. Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Res Microbiol 2020; 171:107-114. [PMID: 31982498 DOI: 10.1016/j.resmic.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
The host-associated gut microbiota is considered critical for the occurrence and progression of colorectal cancer (CRC); however, systematic evaluations of the changes in the biodiversity and richness of mucosa-associated gut microbiota with the development of CRC have been limited. Twenty-three paired samples from colorectal tumor sites and the surrounding non-tumor tissues were collected from stage I to IV CRC patients. The microbial compositions of the samples were analyzed by Illumina MiSeq sequencing of the V4 region of the 16S rRNA gene. Gut bacterial alterations at the tumor sites and surrounding healthy tissue sites collected from the different stages of CRC patients were analyzed. No significant differences were observed in the overall microbial richness and biodiversity between the CRC tissue and surrounding non-CRC tissue samples, however, composition and community segregation of the gut microbiota with the progression of CRC were observed. A general increasing trend of Bacteroidetes, Firmicutes, and Fusobacteria and decreasing trend of Proteobacteria were observed at the phylum level with the development of CRC. Further analysis revealed that thirty-four taxa differed significantly with the progression of CRC. Conclusively, our findings provide a comprehensive view of the human mucosa-associated gut microbiota, in association with the different stages of CRC.
Collapse
Affiliation(s)
- Hong-Wei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Lu-Tao Du
- Department of Clinical Laboratory, Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Yong-Mei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Chuan-Xin Wang
- Department of Clinical Laboratory, Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China.
| |
Collapse
|
21
|
Martínez-Olivas MA, Jiménez-Bueno NG, Hernández-García JA, Fusaro C, Luna-Guido M, Navarro-Noya YE, Dendooven L. Bacterial and archaeal spatial distribution and its environmental drivers in an extremely haloalkaline soil at the landscape scale. PeerJ 2019; 7:e6127. [PMID: 31249729 PMCID: PMC6587938 DOI: 10.7717/peerj.6127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/17/2018] [Indexed: 11/20/2022] Open
Abstract
Background A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. Methods The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. Results A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. Discussion Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.
Collapse
Affiliation(s)
| | | | - Juan Alfredo Hernández-García
- Laboratory of Biological Variation and Evolution, Department of Zoology, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Carmine Fusaro
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
22
|
Shurigin V, Hakobyan A, Panosyan H, Egamberdieva D, Davranov K, Birkeland NK. A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups. Microbiologyopen 2019; 8:e00850. [PMID: 31058468 PMCID: PMC6741134 DOI: 10.1002/mbo3.850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/10/2023] Open
Abstract
During the last five decades, the Aral Sea has gradually changed from a saline water body to a hypersaline lake. Microbial community inhabiting the Aral Sea has been through a succession and continuous adaptation during the last 50 years of increasing salinization, but so far, the microbial diversity has not been explored. Prokaryotic diversity of the Large Aral Sea using cultivation‐independent methods based on determination of environmental 16S rRNA gene sequences revealed a microbial community related to typical marine or (hyper) saline‐adapted Bacteria and Archaea. The archaeal sequences were phylogenetically affiliated with the order Halobacteriales, with a large number of operational taxonomic units constituting a novel cluster in the Haloferacaceae family. Bacterial community analysis indicated a higher diversity with representatives belonging to Proteobacteria, Actinobacteria and Bacteroidetes. Many members of Alphaproteobacteria and Gammaproteobacteria were affiliated with genera like Roseovarius, Idiomarina and Spiribacter which have previously been found in marine or hypersaline waters. The majority of the phylotypes was most closely related to uncultivated organisms and shared less than 97% identity with their closest match in GenBank, indicating a unique community structure in the Large Aral Sea with mostly novel species or genera.
Collapse
Affiliation(s)
- Vyacheslav Shurigin
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Anna Hakobyan
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia
| | - Hovik Panosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia
| | - Dilfuza Egamberdieva
- Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, CAS, Urumqi, People's Republic of China.,Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Kakhramon Davranov
- Department of Microbiology and Biotechnology, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | | |
Collapse
|
23
|
Microbiota dispersion in the Uyuni salt flat (Bolivia) as determined by community structure analyses. Int Microbiol 2019; 22:325-336. [DOI: 10.1007/s10123-018-00052-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/13/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
24
|
Zaitseva SV, Abidueva EY, Radnagurueva AA, Bazarov SM, Buryukhaev SP. Structure of Microbial Communities of the Sediments of Alkaline Transbaikalia Lakes with Different Salinity. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Kimbrel JA, Ballor N, Wu YW, David MM, Hazen TC, Simmons BA, Singer SW, Jansson JK. Microbial Community Structure and Functional Potential Along a Hypersaline Gradient. Front Microbiol 2018; 9:1492. [PMID: 30042744 PMCID: PMC6048260 DOI: 10.3389/fmicb.2018.01492] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Salinity is one of the strongest environmental drivers of microbial evolution and community composition. Here we aimed to determine the impact of salt concentrations (2.5, 7.5, and 33.2%) on the microbial community structure of reclaimed saltern ponds near San Francisco, California, and to discover prospective enzymes with potential biotechnological applications. Community compositions were determined by 16S rRNA amplicon sequencing revealing both higher richness and evenness in the pond sediments compared to the water columns. Co-occurrence network analysis additionally uncovered the presence of microbial seed bank communities, potentially primed to respond to rapid changes in salinity. In addition, functional annotation of shotgun metagenomic DNA showed different capabilities if the microbial communities at different salinities for methanogenesis, amino acid metabolism, and carbohydrate-active enzymes. There was an overall shift with increasing salinity in the functional potential for starch degradation, and a decrease in degradation of cellulose and other oligosaccharides. Further, many carbohydrate-active enzymes identified have acidic isoelectric points that have potential biotechnological applications, including deconstruction of biofuel feedstocks under high ionic conditions. Metagenome-assembled genomes (MAGs) of individual halotolerant and halophilic microbes were binned revealing a variety of carbohydrate-degrading potential of individual pond inhabitants.
Collapse
Affiliation(s)
- Jeffrey A Kimbrel
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicholas Ballor
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yu-Wei Wu
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maude M David
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Terry C Hazen
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Blake A Simmons
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Steven W Singer
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Janet K Jansson
- Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, United States.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
26
|
Han R, Zhang X, Liu J, Long Q, Chen L, Liu D, Zhu D. Microbial community structure and diversity within hypersaline Keke Salt Lake environments. Can J Microbiol 2017; 63:895-908. [PMID: 28850799 DOI: 10.1139/cjm-2016-0773] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Keke Salt Lake is located in the Qaidamu Basin of China. It is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3-V5 regions of 16S rRNA genes. A high diversity of operational taxonomic units was detected for Bacteria and Archaea (734 and 747, respectively), comprising 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%-58.35% relative abundance), Lactococcus (9.52%-10.51%), and Oceanobacillus (8.82%-9.88%) within the Firmicutes phylum (74.81%-80.99%), contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the genera (with an abundance of >10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum, and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai-Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg2+, Cl-, Na+, and K+) mostly correlated with taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.
Collapse
Affiliation(s)
- Rui Han
- a Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.,b Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Xin Zhang
- c Research Center of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai 810016, People's Republic of China
| | - Jing Liu
- c Research Center of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai 810016, People's Republic of China
| | - Qifu Long
- c Research Center of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai 810016, People's Republic of China
| | - Laisheng Chen
- b Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Deli Liu
- a Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Derui Zhu
- c Research Center of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai 810016, People's Republic of China
| |
Collapse
|
27
|
Selvarajan R, Sibanda T, Tekere M, Nyoni H, Meddows-Taylor S. Diversity Analysis and Bioresource Characterization of Halophilic Bacteria Isolated from a South African Saltpan. Molecules 2017; 22:E657. [PMID: 28425950 PMCID: PMC6154464 DOI: 10.3390/molecules22040657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Though intensive research has been channeled towards the biotechnological applications of halophiles and other extremophilic microbes, these studies have not been, by any means, exhaustive. Saline environments still offer a vast diversity of microbes with potential to produce an array of natural products which can only be unlocked by concerted research efforts. In this study, a combination of culture and molecular approaches were employed to characterize halophilic bacteria from saltpan water samples and profile their potential biotechnological applications. Physicochemical analysis of the water samples showed that pH was alkaline (pH 8.8), with a salinity of 12.8%. 16S rRNA gene targeted amplicon analysis produced 10 bacterial phyla constituting of Bacteroidetes (30.57%), Proteobacteria (15.27%), Actinobacteria (9.05%), Planctomycetes (5.52%) and Cyanobacteria (3.18%). Eighteen strains were identified using sequencing analysis of the culturable bacterial strains. From these, the strains SP7 and SP9 were positive for cellulase production while the strains SP4, SP8 and SP22 were positive for lipase production. Quantitative enzyme assays showed moderate extracellular cellulase activity (1.95 U/mL) and lipase activity (3.71 U/mL) by the isolate SP9 and SP4 respectively. Further, of the six isolates, the isolate SP9 exhibited exploitable potential in the bioremediation of hydrocarbon pollution as demonstrated by its fairly high activity against benzanthracene (70% DCPIP reduction). Elucidation of the isolates secondary metabolites showed the production of the molecules 2,3-butanediol, hexahydro-3-(2-methylpropyl)pyrrole[1,2a]pyrazine-1,4-dione, aziridine, dimethylamine and ethyl acetate (GC-MS) and oxypurinol and 5-hydroxydecanoic acid (LC-MS), particularly by the isolate Salinivibrio sp. SP9. Overall, the study showed that the isolated halophiles can produce secondary metabolites with potential industrial and pharmaceutical application.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Timothy Sibanda
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Hlengilizwe Nyoni
- Department of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Stephen Meddows-Taylor
- College of Agriculture and Environmental Sciences Laboratories, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| |
Collapse
|
28
|
Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells. Appl Environ Microbiol 2017; 83:AEM.02659-16. [PMID: 28159795 DOI: 10.1128/aem.02659-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across all 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.IMPORTANCE There are an estimated 15,000 unconventional gas wells in the Marcellus Shale region, each generating up to 8,000 liters of hypersaline produced water per day throughout its lifetime (K. Gregory, R. Vidic, and D. Dzombak, Elements 7:181-186, 2011, https://doi.org/10.2113/gselements.7.3.181; J. Arthur, B. Bohm, and M. Layne, Gulf Coast Assoc Geol Soc Trans 59:49-59, 2009; https://www.marcellusgas.org/index.php). Microbial activity in produced waters could lead to issues with corrosion, fouling, and souring, potentially interfering with hydraulic fracturing operations. Previous studies have found microorganisms contributing to corrosion, fouling, and souring to be abundant across produced water samples from hydraulically fractured wells; however, these findings were based on a limited number of samples and well sites. In this study, we investigated the microbial community structure in produced water samples from 42 unconventional Marcellus Shale wells, confirming the dominance of the genus Halanaerobium in produced water and its metabolic potential for acid and sulfide production and biofilm formation.
Collapse
|
29
|
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Front Microbiol 2016; 7:211. [PMID: 26941731 PMCID: PMC4766312 DOI: 10.3389/fmicb.2016.00211] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.
Collapse
Affiliation(s)
- Charlotte D. Vavourakis
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
- Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of HydrobiologyČeské Budějovice, Czech Republic
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Dimitry Y. Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|