1
|
Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA. Microorganisms 2022; 10:microorganisms10091804. [PMID: 36144405 PMCID: PMC9503305 DOI: 10.3390/microorganisms10091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams.
Collapse
|
2
|
Unveiling the Gut Microbiota and Resistome of Wild Cotton Mice, Peromyscus gossypinus, from Heavy Metal- and Radionuclide-Contaminated Sites in the Southeastern United States. Microbiol Spectr 2021; 9:e0009721. [PMID: 34431703 PMCID: PMC8552609 DOI: 10.1128/spectrum.00097-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prevalence of antibiotic resistance genes (ARGs) can be driven by direct selection from antibiotic use and indirect selection from substances such as heavy metals (HMs). While significant progress has been made to characterize the influence of HMs on the enrichment and dissemination of ARGs in the environment, there is still much we do not know. To fill this knowledge gap, we present a comprehensive analysis of gut bacteria associated with wild cotton mice (Peromyscus gossypinus) trapped from several areas affected by legacies of HM and radionuclide contamination. We explore how these contaminants affect gut microbial community (GMC) composition and diversity and the enrichment of antibiotic, biocide, and metal resistance genes. Although we were able to identify that a myriad of co-occurring antimicrobial and HM resistance genes appear in mice from all areas, including those without a history of contamination, the proportions of co-occurring ARGs and metal resistance genes (MRGs) are higher in sites with radionuclide contamination. These results support those from several previous studies and enhance our understanding of the coselection process, while providing new insights into the ubiquity of antimicrobial resistance in the resistome of wild animals. IMPORTANCE Antimicrobial resistance is a serious global public health concern because of its prevalence and ubiquitous distribution. The rapid dissemination of antibiotic resistance genes is thought to be the result of the massive overuse of antibiotics in agriculture and therapeutics. However, previous studies have demonstrated that the spread of antibiotic resistance genes can also be influenced by heavy metal contamination. This coselection phenomenon, whereby different resistance determinants are genetically linked on the same genetic element (coresistance) or a single genetic element provides resistance to multiple antimicrobial agents (cross-resistance), has profound clinical and environmental implications. In contrast to antibiotics, heavy metals can persist in the environment as a selection pressure for long periods of time. Thus, it is important to understand how antibiotic resistance genes are distributed in the environment and to what extent heavy metal contaminants may be driving their selection, which we have done in one environmental setting.
Collapse
|
3
|
Thomas JC, Oladeinde A, Kieran TJ, Finger JW, Bayona‐Vásquez NJ, Cartee JC, Beasley JC, Seaman JC, McArthur JV, Rhodes OE, Glenn TC. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Microb Biotechnol 2020; 13:1179-1200. [PMID: 32363769 PMCID: PMC7264878 DOI: 10.1111/1751-7915.13578] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co-selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim's Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co-occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae, Bradyrhizobium, Mycobacterium, Streptomyces, Verrumicrobium, Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment.
Collapse
Affiliation(s)
- Jesse C. Thomas
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
| | - Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research UnitUnited States Department of AgricultureAthensGA30605USA
| | - Troy J. Kieran
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
| | - John W. Finger
- Department of Biological SciencesAuburn UniversityAuburnAL36849USA
| | - Natalia J. Bayona‐Vásquez
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
- Institute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| | - John C. Cartee
- Division of STD PreventionCenters for Disease Control and PreventionAtlantaGA30329USA
| | - James C. Beasley
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGA30602USA
| | - John C. Seaman
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
| | - J Vuan McArthur
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
| | - Olin E. Rhodes
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
- Odum School of EcologyUniversity of GeorgiaAthensGA30602USA
| | - Travis C. Glenn
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
- Institute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
4
|
Cho S, Jackson C, Frye J. The prevalence and antimicrobial resistance phenotypes of
Salmonella
,
Escherichia coli
and
Enterococcus
sp. in surface water. Lett Appl Microbiol 2020; 71:3-25. [DOI: 10.1111/lam.13301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- S. Cho
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| | - C.R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| | - J.G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| |
Collapse
|
5
|
Banerji A, Jahne M, Herrmann M, Brinkman N, Keely S. Bringing Community Ecology to Bear on the Issue of Antimicrobial Resistance. Front Microbiol 2019; 10:2626. [PMID: 31803161 PMCID: PMC6872637 DOI: 10.3389/fmicb.2019.02626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern, pertaining not only to human health but also to the health of industry and the environment. AMR research has traditionally focused on genetic exchange mechanisms and abiotic environmental constraints, leaving important aspects of microbial ecology unresolved. The genetic and ecological aspects of AMR, however, not only contribute separately to the problem but also are interrelated. For example, mutualistic associations among microbes such as biofilms can both serve as a barrier to antibiotic penetration and a breeding ground for horizontal exchange of antimicrobial resistance genes (ARGs). In this review, we elucidate how species interactions promote and impede the establishment, maintenance, and spread of ARGs and indicate how management initiatives might benefit from leveraging the principles and tools of community ecology to better understand and manipulate the processes underlying AMR.
Collapse
Affiliation(s)
- Aabir Banerji
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Cincinnati, OH, United States
| | | | | | | | | |
Collapse
|
6
|
Cho S, Nguyen HAT, McDonald JM, Woodley TA, Hiott LM, Barrett JB, Jackson CR, Frye JG. Genetic Characterization of Antimicrobial-Resistant Escherichia coli Isolated from a Mixed-Use Watershed in Northeast Georgia, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193761. [PMID: 31591305 PMCID: PMC6801870 DOI: 10.3390/ijerph16193761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
In order to determine the role of surface water in the development and spread of antibiotic-resistant (AR) bacteria, water samples were collected quarterly from 2015 to 2016 from a mixed-use watershed in Georgia. In our previous study, 496 Escherichia coli were isolated from surface water, out of which, 34 isolates were resistant to antimicrobials. For the current study, these 34 AR E. coli were characterized using pulsed-field gel electrophoresis, AR gene detection, plasmid replicon typing, class I integron detection, and multi-locus sequence typing. Genes were identified as conferring resistance to azithromycin (mph(A)); β-lactams (blaCMY, blaCTX, blaTEM); chloramphenicol (floR); streptomycin (strA, strB); sulfisoxazole (sul1, sul2); tetracycline (tetA, tetB, tetC); and trimethoprim/sulfamethoxazole (dhfr5, dhfr12). Five ciprofloxacin- and/or nalidixic-resistant isolates contained point mutations in gyrA and/or parC. Most of the isolates (n = 28) carried plasmids and three were positive for class I integrons. Twenty-nine sequence types (ST) were detected, including three epidemic urinary-tract-infection-associated ST131 isolates. One of the ST131 E. coli isolates exhibited an extended-spectrum β-lactamase (ESBL) phenotype and carried blaCTX-M-15 and blaTEM-1. To our knowledge, this is the first study on the emergence of an ESBL-producing E. coli ST131 from environmental water in the USA, which poses a potential risk to human health through the recreational, agricultural, or municipal use of this natural resource. This study identified E. coli with AR mechanisms to commonly used antimicrobials and carrying mobile genetic elements, which could transfer AR genes to other bacteria in the aquatic environment.
Collapse
Affiliation(s)
- Sohyun Cho
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Hoang Anh Thi Nguyen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
- (Present) Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jacob M McDonald
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.
- Southeast Coast Network, National Park Service, Athens, GA 30605, USA.
| | - Tiffanie A Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Lari M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - John B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| |
Collapse
|
7
|
Hassan AE, Mohammed SM, Abou‐Elkhair RAI, Moustafa AH. Synthesis and Biological Evaluation of Glycosides and Acyclic Nucleosides Derived 2‐Oxonicotinonitriles. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abdalla E. Hassan
- Applied Nucleic Acids Research CenterZagazig University Zagazig Egypt
- Chemistry Department, Faculty of ScienceZagazig University Zagazig Egypt
| | - Samar M. Mohammed
- Chemistry Department, Faculty of ScienceZagazig University Zagazig Egypt
| | - Reham A. I. Abou‐Elkhair
- Applied Nucleic Acids Research CenterZagazig University Zagazig Egypt
- Chemistry Department, Faculty of ScienceZagazig University Zagazig Egypt
| | - Ahmed H. Moustafa
- Chemistry Department, Faculty of ScienceZagazig University Zagazig Egypt
| |
Collapse
|
8
|
Van Hamelsveld S, Adewale ME, Kurenbach B, Godsoe W, Harding JS, Remus-Emsermann MNP, Heinemann JA. Prevalence of antibiotic-resistant Escherichia coli isolated from urban and agricultural streams in Canterbury, New Zealand. FEMS Microbiol Lett 2019; 366:5488434. [DOI: 10.1093/femsle/fnz104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract
Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.
Collapse
Affiliation(s)
- Sophie Van Hamelsveld
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Muyiwa E Adewale
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Brigitta Kurenbach
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
- Centre for Integrated Research in Biosafety and Centre for Integrative Ecology, University of Canterbury, Christchurch 8140, New Zealand
| | - William Godsoe
- Bio-Protection Centre, Lincoln University, Lincoln 7647, New Zealand
| | - Jon S Harding
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Mitja N P Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
- Centre for Integrated Research in Biosafety and Centre for Integrative Ecology, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
9
|
Glycoside- and acyclic nucleoside-based 6-cyclohexyl-4-aryl-2-oxonicotinonitrile: synthesis and antimicrobial evaluation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Halder M, Mookerjee S, Batabyal P, Palit A. Waterborne outbreaks in diarrhoea endemic foci of India: a longitudinal exploration and its implications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:172. [PMID: 29478177 DOI: 10.1007/s10661-017-6424-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Diarrhoea remains a global public health enigma raising deep concerns for the health planners since contaminated potable water often spoils the community health structure. We hereby report a 6-year odd continuing outbreak surveillance report based on potable water indices, during which 264 water samples were screened from different districts of West Bengal, India. Samples were analysed for the presence of different enteropathogenic bacterial species by conventional molecular tools and their sensitivity to antibiotics. 78.03% samples were positive for enteropathogenic bacterial organisms and 75% samples harbored Coliform. 45.45, 12.12, and 4.16% samples were positive for E.coli, V. cholerae, and V. mimicus, respectively. Diarrhoeagenic E.coli 7 EPEC, 10 ETEC, and 2 EIEC were isolated along with 2 V. cholerae O1 Ogawa (ctxA and tcpA ElTor positive), one each from tube well and pond. Interestingly, 4 V.cholerae non-O1/non-O139 also harbored hlyA gene. The detection of toxin genes among this bacterial pool of sampled water indicates the fallout of the potable water sources, thus enabling us to establish that it is none other than the contaminated potable water system which often wreaks havoc in the south Bengal diarrhoeal menace. The consequences are further complicated by the presence of drug-resistant pathogenic bacterial pool to fluoroquinolone, beta-lactams, and cephalosporins, in the accessible potable water, with threats of outbreaks exploding into an epidemic, given suitable environment, poor sanitation, and unhygienic practices. Therefore, we strongly recommend re-modelling of 'point-of-use water disinfection' measures and adequate personal hygiene for healthier community life.
Collapse
Affiliation(s)
- Madhumanti Halder
- Division of Bacteriology, National Institute of Cholera & Enteric Diseases, (Indian Council of Medical Research), P-33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Subham Mookerjee
- Division of Bacteriology, National Institute of Cholera & Enteric Diseases, (Indian Council of Medical Research), P-33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Prasenjit Batabyal
- Division of Bacteriology, National Institute of Cholera & Enteric Diseases, (Indian Council of Medical Research), P-33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Anup Palit
- Division of Bacteriology, National Institute of Cholera & Enteric Diseases, (Indian Council of Medical Research), P-33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India.
| |
Collapse
|
11
|
McArthur JV, Dicks CA, Bryan AL, Tuckfield RC. The effects of low-level ionizing radiation and copper exposure on the incidence of antibiotic resistance in lentic biofilm bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:390-397. [PMID: 28554028 DOI: 10.1016/j.envpol.2017.03.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Environmental reservoirs of antibiotic resistant bacteria are poorly understood. Understanding how the environment selects for resistance traits in the absence of antibiotics is critical in developing strategies to mitigate this growing menace. Indirect or co-selection of resistance by environmental pollution has been shown to increase antibiotic resistance. However no attention has been given to the effects of low-level ionizing radiation or the interactions between radiation and heavy metals on the maintenance or selection for antibiotic resistance (AR) traits. Here we explore the effect of radiation and copper on antibiotic resistance. Bacteria were collected from biofilms in two ponds - one impacted by low-level radiocesium and the other an abandoned farm pond. Through laboratory controlled experiments we examined the effects of increasing concentrations of copper on the incidence of antibiotic resistance. Differences were detected in the resistance profiles of the controls from each pond. Low levels (0.01 mM) of copper sulfate increased resistance but 0.5 mM concentrations of copper sulfate depressed the AR response in both ponds. A similar pattern was observed for levels of multiple antibiotic resistance per isolate. The first principal component response of isolate exposure to multiple antibiotics showed significant differences among the six isolate treatment combinations. These differences were clearly visualized through a discriminant function analysis, which showed distinct antibiotic resistance response patterns based on the six treatment groups.
Collapse
Affiliation(s)
- J Vaun McArthur
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA.
| | | | - A Lawrence Bryan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | | |
Collapse
|
12
|
Garner E, Wallace JS, Argoty GA, Wilkinson C, Fahrenfeld N, Heath LS, Zhang L, Arabi M, Aga DS, Pruden A. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes. Sci Rep 2016; 6:38432. [PMID: 27917931 PMCID: PMC5137141 DOI: 10.1038/srep38432] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.
Collapse
Affiliation(s)
- Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua S Wallace
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | - Caitlin Wilkinson
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nicole Fahrenfeld
- Department of Civil and Environmental Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mazdak Arabi
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Winkworth-Lawrence C, Lange K. Antibiotic Resistance Genes in Freshwater Biofilms May Reflect Influences from High-Intensity Agriculture. MICROBIAL ECOLOGY 2016; 72:763-772. [PMID: 26932464 DOI: 10.1007/s00248-016-0740-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Antibiotic resistance is a major public health concern with growing evidence of environmental gene reservoirs, especially in freshwater. However, the presence of antibiotic resistance genes in freshwater, in addition to the wide spectrum of land use contaminants like nitrogen and phosphate, that waterways are subjected to is inconclusive. Using molecular analyses, freshwater benthic rock biofilms were screened for genes conferring resistance to antibiotics used in both humans and farmed animals (aacA-aphD to aminoglycosides; mecA to ß-lactams; ermA and ermB to macrolides; tetA, tetB, tetK, and tetM to tetracyclines; vanA and vanB to glycopeptides). We detected widespread low levels of antibiotic resistance genes from 20 waterways across southern New Zealand throughout the year (1.3 % overall detection rate; 480 samples from three rocks per site, 20 sites, eight occasions; July 2010-May 2011). Three of the ten genes, ermB, tetK, and tetM, were detected in 62 of the 4800 individual screens; representatives confirmed using Sanger sequencing. No distinction could be made between human and agricultural land use contamination sources based on gene presence distribution alone. However, land use pressures are suggested by moderate correlations between antibiotic resistance genes and high-intensity farming in winter. The detection of antibiotic resistance genes at several sites not subject to known agricultural pressures suggests human sources of resistance, like waterway contamination resulting from unsatisfactory toilet facilities at recreational sites.
Collapse
Affiliation(s)
| | - Katharina Lange
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Center of Ecology, Evolution and Biochemistry, Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047, Kastanienbaum, Switzerland
| |
Collapse
|