1
|
Znamínko M, Falteisek L, Vrbická K, Klímová P, Christiansen JR, Jørgensen CJ, Stibal M. Methylotrophic Communities Associated with a Greenland Ice Sheet Methane Release Hotspot. MICROBIAL ECOLOGY 2023; 86:3057-3067. [PMID: 37843656 PMCID: PMC10640400 DOI: 10.1007/s00248-023-02302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023]
Abstract
Subglacial environments provide conditions suitable for the microbial production of methane, an important greenhouse gas, which can be released from beneath the ice as a result of glacial melting. High gaseous methane emissions have recently been discovered at Russell Glacier, an outlet of the southwestern margin of the Greenland Ice Sheet, acting not only as a potential climate amplifier but also as a substrate for methane consuming microorganisms. Here, we describe the composition of the microbial assemblage exported in meltwater from the methane release hotspot at Russell Glacier and its changes over the melt season and as it travels downstream. We found that a substantial part (relative abundance 27.2% across the whole dataset) of the exported assemblage was made up of methylotrophs and that the relative abundance of methylotrophs increased as the melt season progressed, likely due to the seasonal development of the glacial drainage system. The methylotrophs were dominated by representatives of type I methanotrophs from the Gammaproteobacteria; however, their relative abundance decreased with increasing distance from the ice margin at the expense of type II methanotrophs and/or methylotrophs from the Alphaproteobacteria and Betaproteobacteria. Our results show that subglacial methane release hotspot sites can be colonized by microorganisms that can potentially reduce methane emissions.
Collapse
Affiliation(s)
- Matěj Znamínko
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia.
- Current address: Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Lukáš Falteisek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Kristýna Vrbická
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Petra Klímová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jesper R Christiansen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | | | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia.
| |
Collapse
|
2
|
Vrbická K, Kohler TJ, Falteisek L, Hawkings JR, Vinšová P, Bulínová M, Lamarche-Gagnon G, Hofer S, Kellerman AM, Holt AD, Cameron KA, Schön M, Wadham JL, Stibal M. Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet. Front Microbiol 2022; 13:1035197. [PMID: 36523833 PMCID: PMC9745319 DOI: 10.3389/fmicb.2022.1035197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 10/17/2023] Open
Abstract
Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport.
Collapse
Affiliation(s)
- Kristýna Vrbická
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Tyler J. Kohler
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lukáš Falteisek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jon R. Hawkings
- Department of Earth and Environment, University of Pennsylvania, Philadelphia, PA, United States
| | - Petra Vinšová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Marie Bulínová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Guillaume Lamarche-Gagnon
- Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Stefan Hofer
- Department of Geosciences, UiO University of Oslo, Oslo, Norway
| | - Anne M. Kellerman
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | - Amy D. Holt
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | - Karen A. Cameron
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martina Schön
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jemma L. Wadham
- Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). WATER 2020. [DOI: 10.3390/w12113098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial communities promptly respond to the environmental perturbations, especially in the Arctic and sub-Arctic systems that are highly impacted by climate change, and fluctuations in the diversity level of microbial assemblages could give insights on their expected response. 16S rRNA gene amplicon sequencing was applied to describe the bacterial community composition in water and sediment through the sub-Arctic Pasvik River. Our results showed that river water and sediment harbored distinct communities in terms of diversity and composition at genus level. The distribution of the bacterial communities was mainly affected by both salinity and temperature in sediment samples, and by oxygen in water samples. Glacial meltwaters and runoff waters from melting ice probably influenced the composition of the bacterial community at upper and middle river sites. Interestingly, marine-derived bacteria consistently accounted for a small proportion of the total sequences and were also more prominent in the inner part of the river. Results evidenced that particular conditions occurring at sampling sites (such as algal blooms, heavy metal contamination and anaerobiosis) may select species at local scale from a shared bacterial pool, thus favoring certain bacterial taxa. Conversely, the few phylotypes specifically detected in some sites are probably due to localized external inputs introducing allochthonous microbial groups.
Collapse
|
4
|
Cameron KA, Müller O, Stibal M, Edwards A, Jacobsen CS. Glacial microbiota are hydrologically connected and temporally variable. Environ Microbiol 2020; 22:3172-3187. [PMID: 32383292 DOI: 10.1111/1462-2920.15059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/15/2020] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
Glaciers are melting rapidly. The concurrent export of microbial assemblages alongside glacial meltwater is expected to impact the ecology of adjoining ecosystems. Currently, the source of exported assemblages is poorly understood, yet this information may be critical for understanding how current and future glacial melt seasons may influence downstream environments. We report on the connectivity and temporal variability of microbiota sampled from supraglacial, subglacial and periglacial habitats and water bodies within a glacial catchment. Sampled assemblages showed evidence of being biologically connected through hydrological flowpaths, leading to a meltwater system that accumulates prokaryotic biota as it travels downstream. Temporal changes in the connected assemblages were similarly observed. Snow assemblages changed markedly throughout the sample period, likely reflecting changes in the surrounding environment. Changes in supraglacial meltwater assemblages reflected the transition of the glacial surface from snow-covered to bare-ice. Marked snowmelt across the surrounding periglacial environment resulted in the flushing of soil assemblages into the riverine system. In contrast, surface ice within the ablation zone and subglacial meltwaters remained relatively stable throughout the sample period. Our results are indicative that changes in snow and ice melt across glacial environments will influence the abundance and diversity of microbial assemblages transported downstream.
Collapse
Affiliation(s)
- Karen A Cameron
- Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DD, UK.,Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Oliver Müller
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Marek Stibal
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DD, UK
| | - Carsten Suhr Jacobsen
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| |
Collapse
|
5
|
Kong W, Liu J, Ji M, Yue L, Kang S, Morgan-Kiss RM. Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan Plateau. FEMS Microbiol Ecol 2019; 95:5498296. [DOI: 10.1093/femsec/fiz074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Weidong Kong
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinbo Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Mukan Ji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Linyan Yue
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shichang Kang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Rachael M Morgan-Kiss
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
6
|
Žárský JD, Kohler TJ, Yde JC, Falteisek L, Lamarche-Gagnon G, Hawkings JR, Hatton JE, Stibal M. Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland. FEMS Microbiol Ecol 2018; 94:5017442. [DOI: 10.1093/femsec/fiy100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jakub D Žárský
- Department of Ecology, Faculty of Science, Charles University, Prague, Vinicna 7, 128 44 Prague 2, Czechia
| | - Tyler J Kohler
- Department of Ecology, Faculty of Science, Charles University, Prague, Vinicna 7, 128 44 Prague 2, Czechia
| | - Jacob C Yde
- Department of Environment Sciences, Western Norway University of Applied Sciences, Royrgata 6, 6856 Sogndal, Norway
| | - Lukáš Falteisek
- Department of Ecology, Faculty of Science, Charles University, Prague, Vinicna 7, 128 44 Prague 2, Czechia
| | - Guillaume Lamarche-Gagnon
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | - Jon R Hawkings
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | - Jade E Hatton
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Vinicna 7, 128 44 Prague 2, Czechia
| |
Collapse
|