1
|
Campos PM, Lucid MK, Ehlers S, Walke JB. Low-level pathogen infection and geographic location correlate with the skin microbiomes of Columbia spotted frogs ( Rana luteiventris) in a montane landscape. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100213. [PMID: 38187998 PMCID: PMC10770434 DOI: 10.1016/j.crmicr.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The skin microbiome of amphibians can influence host susceptibility towards the fungal pathogen Batrachochytrium dendrobatidis (Bd), while simultaneously having the potential to be altered by Bd. Severe Bd infections are known to alter the amphibian skin microbiome; however, little is known about microbiome interactions in amphibians with low infection intensity. In addition to disease dynamics, environmental factors may influence the microbiome. To test for patterns in bacterial diversity based on pathogen infection and environmental factors, 399 Columbia spotted frogs (Rana luteiventris) were sampled throughout northern Idaho and northeastern Washington across two years. Bd prevalence and intensity were measured in 376 frogs, revealing a prevalence of 69%, but generally low infection intensity (Mean = 127 Bd zoospore equivalents among infected frogs). Skin bacterial communities were characterized in 92 frogs using 16S rRNA gene amplicon sequencing. Our results indicated correlations of decreasing Shannon diversity and evenness as infection intensity increased. Latitude was correlated with bacterial richness and Faith's Phylogenetic Diversity measures, indicating increased diversity in northern locations. Beta diversity (UniFrac) analyses revealed that skin microbiomes were distinct between infected and uninfected frogs, and infection intensity had a significant effect on microbiome composition. Site explained the majority of microbiome variation (weighted UniFrac: 57.5%), suggesting a combination of local habitat conditions explain variation, as only small proportions of variation could be explained by year, month, temperature, elevation, and latitude individually. Bacterial genera with potential for Bd-inhibitory properties were found with differential relative abundance in infected and uninfected frogs, with higher Stenotrophomonas and lower Pseudomonas relative abundance observed in infected frogs. Further study may indicate if Bd inhibition by members of the skin microbiome is an influence behind the low infection intensities observed and whether low Bd infection intensities are capable of altering skin microbiome composition.
Collapse
Affiliation(s)
- Philip M. Campos
- Department of Biology, Eastern Washington University, 1175 Washington St., Cheney, WA 99004, USA
| | - Michael K. Lucid
- Idaho Department of Fish and Game, 2885 Kathleen Ave., Coeur d'Alene, ID 83815, USA
- Selkirk Wildlife Science, LLC, PO Box 733, Sandpoint, ID 83864, USA
| | - Shannon Ehlers
- Idaho Department of Fish and Game, 2885 Kathleen Ave., Coeur d'Alene, ID 83815, USA
- U.S. Fish and Wildlife Service, 287 Westside Rd., Bonners Ferry, ID 83805, USA
| | - Jenifer B. Walke
- Department of Biology, Eastern Washington University, 1175 Washington St., Cheney, WA 99004, USA
| |
Collapse
|
2
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
3
|
Loudon AH, Terrell KA, Davis RW, Umile TP, Lipps GJ, Greathouse J, Chapman E, Roblee K, Kleopfer JD, Bales EK, Hyman OJ, Harris RN, Minbiole KPC. Metabolite compositions on skins of eastern hellbenders Cryptobranchus alleganiensis alleganiensis differ with location and captivity. DISEASES OF AQUATIC ORGANISMS 2023; 153:9-16. [PMID: 36727687 DOI: 10.3354/dao03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eastern hellbenders Cryptobranchus alleganiensis alleganiensis, large aquatic salamanders, are declining over most of their range. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has contributed to global amphibian declines and has been detected on eastern hellbenders, but infection intensities were lower than those of species that are more susceptible to Bd. The factors limiting Bd on hellbenders may include antifungal metabolites produced by their skin microbiota. We used a metabolite fingerprinting technique to noninvasively identify the presence, but not identity, of metabolites associated with eastern hellbenders. We surveyed the skin of wild eastern hellbenders to test whether the composition and richness (i.e. number of metabolites) of their metabolites are explained by Bd status or location. Furthermore, we surveyed for metabolites on captive eastern hellbenders to test whether metabolite compositions were different between captive and wild eastern hellbenders. Bd detection was not associated with either metabolite richness or composition. Both metabolite composition and richness differed significantly on hellbenders from different locations (i.e. states). For metabolite composition, there was a statistical interaction between location and Bd status. Metabolite richness was greater on captive eastern hellbenders compared to wild hellbenders, and metabolite compositions differed between wild and captive eastern hellbenders. The methods we employed to detect metabolite profiles effectively grouped individuals by location even though metabolite composition and richness have high levels of intraspecific variation. Understanding the drivers and functional consequences of assemblages of skin metabolites on amphibian health will be an important step toward understanding the mechanisms that result in disease vulnerability.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biology Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ienes-Lima J, Prichula J, Abadie M, Borges-Martins M, Frazzon APG. First Report of Culturable Skin Bacteria in Melanophryniscus admirabilis (Admirable Redbelly Toad). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02069-7. [PMID: 35859070 DOI: 10.1007/s00248-022-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Melanophryniscus admirabilis is a small toad, critically endangered with a microendemic distribution in the Atlantic Forest in southern Brazil. The amphibian skin microbiome is considered one of the first lines of defense against pathogenic infections, such as Batrachochytrium dendrobatidis (Bd). The knowledge of skin amphibian microbiomes is important to numerous fields, including species conservation, detection, and quantification of environmental changes and stressors. In the present study, we investigated, for the first time, cultivable bacteria in the skin of wild M. admirabilis, and detected Bd fungus by nested polymerase chain reaction (PCR) technique. Skin swab samples were collected from 15 wild M. admirabilis, and the isolation of bacteria was performed by means of different culture strategies. A total of 62 bacterial isolates being Bacillus (n = 22; 34.48%), Citrobacter (n = 10; 16.13%), and Serratia (n = 12; 19.35%) were more frequently isolated genera. Interestingly, all skin samples tested were Bd negative. Some bacterial genera identified in our study might be acting in a synergic relationship and protecting them against the Bd fungus. In addition, these bacteria may play an essential role in maintaining this species in an environment modulated by anthropic actions. This first report of skin cultivable bacteria from M. admirabilis natural population improves our knowledge of skin amphibian microbiomes, contributing to a better understanding of their ecology and how this species has survived in an environment modulated by anthropic action.
Collapse
Affiliation(s)
- Julia Ienes-Lima
- Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Michelle Abadie
- Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Márcio Borges-Martins
- Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Paula Guedes Frazzon
- Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
6
|
Smith SN, Colston TJ, Siler CD. Venomous Snakes Reveal Ecological and Phylogenetic Factors Influencing Variation in Gut and Oral Microbiomes. Front Microbiol 2021; 12:657754. [PMID: 33841384 PMCID: PMC8032887 DOI: 10.3389/fmicb.2021.657754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The gastrointestinal tract (GIT) of vertebrates contains a series of organs beginning with the mouth and ending with the anus or cloacal opening. Each organ represents a unique environment for resident microorganisms. Due to their simple digestive anatomy, snakes are good models for studying microbiome variation along the GIT. Cloacal sampling captures the majority of the microbial diversity found in the GIT of snakes—yet little is known about the oral microbiota of snakes. Most research on the snake mouth and gut microbiota are limited to studies of a single species or captive-bred individuals. It therefore remains unclear how a host’s life history, diet, or evolutionary history correlate with differences in the microbial composition within the mouths and guts of wild snakes. We sampled the mouth and gut microbial communities from three species of Asian venomous snakes and utilized 16S rRNA microbial inventories to test if host phylogenetic and ecological differences correlate with distinct microbial compositions within the two body sites. These species occupy three disparate habitat types: marine, semi-arboreal, and arboreal, our results suggest that the diversity of snake mouth and gut microbial communities correlate with differences in both host ecology and phylogeny.
Collapse
Affiliation(s)
- Sierra N Smith
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Timothy J Colston
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
7
|
Douglas AJ, Hug LA, Katzenback BA. Composition of the North American Wood Frog (Rana sylvatica) Bacterial Skin Microbiome and Seasonal Variation in Community Structure. MICROBIAL ECOLOGY 2021; 81:78-92. [PMID: 32613267 DOI: 10.1007/s00248-020-01550-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
While a number of amphibian skin microbiomes have been characterized, it is unclear how these communities might vary in response to seasonal changes in the environment and the corresponding behaviors that many amphibians exhibit. Given recent studies demonstrating the importance of the skin microbiome in frog innate immune defense against pathogens, investigating how changes in the environment impact the microbial species present will provide a better understanding of conditions that may alter host susceptibility to pathogens in their environment. We sampled the bacterial skin microbiome of North American wood frogs (Rana sylvatica) from two breeding ponds in the spring, along with the bacterial community present in their vernal breeding pools, and frogs from the nearby forest floor in the summer and fall to determine whether community composition differs by sex, vernal pond site, or temporally across season (spring, summer, fall). Taxon relative abundance data reveals a profile of bacterial phyla similar to those previously described on anuran skin, with Proteobacteria, Bacteroidetes, and Actinobacteria dominating the wood frog skin microbiome. Our results indicate that sex had no significant effect on skin microbiota diversity; however, this may be due to our limited female frog sample size. Vernal pool site had a small but significant effect on skin microbiota, but skin-associated communities were more similar to each other than to the communities observed in the frogs' respective pond water. Across seasons, diversity analyses suggest that there are significant differences between the bacterial skin microbiome of frogs from spring and summer/fall groups while the average α-diversity per frog remained consistent. These results illustrate seasonal variation in wood frog skin microbiome structure and highlight the importance of considering temporal trends in an amphibian microbiome, particularly for species whose life history requires recurrent shifts in habitat and behavior.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
8
|
Ruthsatz K, Lyra ML, Lambertini C, Belasen AM, Jenkinson TS, da Silva Leite D, Becker CG, Haddad CFB, James TY, Zamudio KR, Toledo LF, Vences M. Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil's Atlantic Forest treefrogs. Sci Rep 2020; 10:22311. [PMID: 33339839 PMCID: PMC7749163 DOI: 10.1038/s41598-020-79130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
In Brazil’s Atlantic Forest (AF) biodiversity conservation is of key importance since the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to the rapid loss of amphibian populations here and worldwide. The impact of Bd on amphibians is determined by the host's immune system, of which the skin microbiome is a critical component. The richness and diversity of such cutaneous bacterial communities are known to be shaped by abiotic factors which thus may indirectly modulate host susceptibility to Bd. This study aimed to contribute to understanding the environment-host–pathogen interaction determining skin bacterial communities in 819 treefrogs (Anura: Hylidae and Phyllomedusidae) from 71 species sampled across the AF. We investigated whether abiotic factors influence the bacterial community richness and structure on the amphibian skin. We further tested for an association between skin bacterial community structure and Bd co-occurrence. Our data revealed that temperature, precipitation, and elevation consistently correlate with richness and diversity of the skin microbiome and also predict Bd infection status. Surprisingly, our data suggest a weak but significant positive correlation of Bd infection intensity and bacterial richness. We highlight the prospect of future experimental studies on the impact of changing environmental conditions associated with global change on environment-host–pathogen interactions in the AF.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany.
| | - Mariana L Lyra
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anat M Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Thomas S Jenkinson
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Domingos da Silva Leite
- Laboratório de Antígenos Bacterianos II, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, CEP 13083-862, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35847, USA
| | - Célio F B Haddad
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany
| |
Collapse
|
9
|
Loudon AH, Kurtz A, Esposito E, Umile TP, Minbiole KPC, Parfrey LW, Sheafor BA. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment. FEMS Microbiol Ecol 2020; 96:5894915. [DOI: 10.1093/femsec/fiaa168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023] Open
Abstract
ABSTRACT
Global amphibian declines due to the fungal pathogen Batrachochytrium dendrobatidis (Bd) have led to questions about how amphibians defend themselves against skin diseases. A total of two amphibian defense mechanisms are antimicrobial peptides (AMPs), a component of amphibian innate immune defense and symbiotic skin bacteria, which can act in synergy. We characterized components of these factors in four populations of Columbia spotted frogs (Rana luteiventris) to investigate their role in disease defense. We surveyed the ability of their AMPs to inhibit Bd, skin bacterial community composition, skin metabolite profiles and presence and intensity of Bd infection. We found that AMPs from R. luteiventris inhibited Bd in bioassays, but inhibition did not correlate with Bd intensity on frogs. R. luteiventris had two prevalent and abundant core bacteria: Rhizobacter and Chryseobacterium. Rhizobacter relative abundance was negatively correlated with AMP's ability to inhibit Bd, but was not associated with Bd status itself. There was no relationship between metabolites and Bd. Bacterial communities and Bd differ by location, which suggests a strong environmental influence. R. luteiventris are dominated by consistent core bacteria, but also house transient bacteria that are site specific. Our emergent hypothesis is that host control and environmental factors shape the microbiota on R. luteiventris.
Collapse
Affiliation(s)
- A H Loudon
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
| | - A Kurtz
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| | - E Esposito
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| | - T P Umile
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, 19085-1603, USA
| | - K P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, 19085-1603, USA
| | - L W Parfrey
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
| | - B A Sheafor
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| |
Collapse
|
10
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
11
|
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental Factors and Host Microbiomes Shape Host-Pathogen Dynamics. Trends Parasitol 2020; 36:616-633. [PMID: 32402837 DOI: 10.1016/j.pt.2020.04.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms are increasingly recognized as ecosystem-relevant components because they affect the population dynamics of hosts. Functioning at the interface of the host and pathogen, skin and gut microbiomes are vital components of immunity. Recent work reveals a strong influence of biotic and abiotic environmental factors (including the environmental microbiome) on disease dynamics, yet the importance of the host-host microbiome-pathogen-environment interaction has been poorly reflected in theory. We use amphibians and the disease chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis to show how interactions between host, host microbiome, pathogen, and the environment all affect disease outcome. Our review provides new perspectives that improve our understanding of disease dynamics and ecology by incorporating environmental factors and microbiomes into disease theory.
Collapse
Affiliation(s)
- Adriana P Bernardo-Cravo
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany; Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Adeline Loyau
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, D-16775, Germany
| |
Collapse
|
12
|
Birer C, Moreau CS, Tysklind N, Zinger L, Duplais C. Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest. Mol Ecol 2020; 29:1372-1385. [PMID: 32133714 DOI: 10.1111/mec.15400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.
Collapse
Affiliation(s)
- Caroline Birer
- CNRS, UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, Cayenne, France.,Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corrie S Moreau
- Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Niklas Tysklind
- INRAE, UMR8172 EcoFoG, AgroParisTech, CIRAD, CNRS, Université des Antilles, Université de Guyane, Kourou, France
| | - Lucie Zinger
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Christophe Duplais
- CNRS, UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, Cayenne, France
| |
Collapse
|
13
|
Xu LL, Chen H, Zhang M, Zhu W, Chang Q, Lu G, Chen Y, Jiang J, Zhu L. Changes in the community structure of the symbiotic microbes of wild amphibians from the eastern edge of the Tibetan Plateau. Microbiologyopen 2020; 9:e1004. [PMID: 32045512 PMCID: PMC7142363 DOI: 10.1002/mbo3.1004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/31/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Environment has a potential effect on the animal symbiotic microbiome. Here, to study the potential relationship of the symbiotic microbiomes of wild amphibians with altitude, we collected the gut and skin samples from frogs (nine species) and the environmental samples (water and soil samples) from the Leshan Mountains (altitude: 360–410 m) and Gongga Mountains (altitude: 3340–3989 m) on the eastern edge of the Tibetan Plateau. Bufo gargarizans (Bg) samples were collected from both the Leshan and Gongga mountain regions (Bg was the only species sampled on both mountains). The DNA extracted from each sample was performed high‐throughput sequencing (MiSeq) of bacterial 16S rRNA gene amplicons. High relative abundance of Caulobacteraceae and Sphingomonadaceae was found in skin samples from both Bg and the other high‐altitude amphibians (nine species combined). High relative abundance of Coxiellaceae and Mycoplasmataceae was found in gut samples from both Bg and the other high‐altitude amphibians. Furthermore, the alpha and beta diversities of skin and gut samples from Bg and the other amphibian species (nine species combined) were similar. In terms of the symbiotic microbial community, the low‐altitude samples were less diverse and more similar to each other than the high‐altitude samples were. We speculated that extreme high‐altitude environments and host phylogeny may affect the amphibian microbiome. Despite the distinct microbial community differences between the skin and gut microbiomes, some functions were similar in the Bg and combined high‐altitude samples. The Bg and high‐altitude skin samples had higher oxidative stress tolerance and biofilm formation than the low‐altitude skin samples. However, the opposite results were observed for the Bg and high‐altitude gut samples. Further study is required to determine whether these characteristics favor high‐altitude amphibian adaptation to extreme environments.
Collapse
Affiliation(s)
- Liang Liang Xu
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hua Chen
- Shanghai Biozeron Bioinformatics CenterShanghaiChina
| | - Mengjie Zhang
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Wei Zhu
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Qing Chang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Guoqing Lu
- Department of BiologyUniversity of Nebraska at OmahaOmahaNEUSA
| | - Youhua Chen
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Jianping Jiang
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Lifeng Zhu
- College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
14
|
Barnes EM, Carter EL, Lewis JD. Predicting Microbiome Function Across Space Is Confounded by Strain-Level Differences and Functional Redundancy Across Taxa. Front Microbiol 2020; 11:101. [PMID: 32117131 PMCID: PMC7018939 DOI: 10.3389/fmicb.2020.00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
Variation in the microbiome among individual organisms may play a critical role in the relative susceptibility of those organisms to infection, disease, and death. However, predicting microbiome function is difficult because of spatial and temporal variation in microbial diversity, and taxonomic diversity is not predictive of microbiome functional diversity. Addressing this issue may be particularly important when addressing pandemic diseases, such as the global amphibian die-off associated with Bd. Some of the most important factors in probiotic development for disease treatment are whether bacteria with desired function can be found on native amphibians in the local environment. To address this issue, we isolated, sequenced, and assayed the cutaneous bacterial communities of Plethodon cinereus along a gradient of land use change. Our results suggest that cutaneous community composition, but not overall diversity, change with changes in land use, but this does not correspond to significant change in Bd-inhibitory function. We found that Bd-inhibition is a functionally redundant trait, but that level of inhibition varies over phylogenetic, spatial, and temporal scales. This research provides further evidence for the importance of continued examination of amphibian microbial communities across environmental gradients, including biotic and abiotic interactions, when considering disease dynamics.
Collapse
Affiliation(s)
- Elle M Barnes
- Department of Biological Sciences, Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, United States.,Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| | - Erin L Carter
- Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| | - J D Lewis
- Department of Biological Sciences, Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, United States.,Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| |
Collapse
|
15
|
Kruger A. Functional Redundancy of Batrachochytrium dendrobatidis Inhibition in Bacterial Communities Isolated from Lithobates clamitans Skin. MICROBIAL ECOLOGY 2020; 79:231-240. [PMID: 31165187 DOI: 10.1007/s00248-019-01387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The cutaneous microbial community can influence the health of amphibians exposed to Batrachochytrium dendrobatidis (Bd), a fungal pathogen that has contributed to recent amphibian declines. Resistance to Bd in amphibian populations is correlated with the presence of anti-Bd cutaneous microbes, which confer disease resistance by inhibiting Bd growth. I aimed to determine if green frogs (Lithobates clamitans), an abundant and widely distributed species in New Jersey, harbored bacteria that inhibit Bd and whether the presence and identity of these microbes varied among sites. I used in vitro challenge assays to determine if bacteria isolated from green frog skin could inhibit or enhance the growth of Bd. I found that green frogs at all sites harbored anti-Bd bacteria. However, there were differences in Bd inhibition capabilities among bacterial isolates identified as the same operational taxonomic unit (OTU), lending support to the idea that phylogenetic relatedness does not always predict Bd inhibition status. Additionally, anti-Bd bacterial richness did not vary by site, but the composition of anti-Bd bacterial taxa was distinct at each site. This suggests that there is functional redundancy of Bd inhibition across unique communities of anti-Bd symbionts found on frogs at different sites. These findings highlight the need to better elucidate the structure-function relationship of microbiomes and their role in disease resistance.
Collapse
Affiliation(s)
- Ariel Kruger
- Graduate Program in Ecology and Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
16
|
Li H, Wang Y, Yu Q, Feng T, Zhou R, Shao L, Qu J, Li N, Bo T, Zhou H. Elevation is Associated with Human Skin Microbiomes. Microorganisms 2019; 7:microorganisms7120611. [PMID: 31771258 PMCID: PMC6955857 DOI: 10.3390/microorganisms7120611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023] Open
Abstract
Human skin microbiota plays a crucial role in the defense against pathogens, and is associated with various skin diseases. High elevation is positively correlated with various extreme environmental conditions (i.e., high ultraviolet radiation), which may exert selection pressure on skin microbiota, and therefore influence human health. Most studies regarding skin microbial communities have focused on low-elevation hosts. Few studies have explored skin microbiota in high-elevation humans. Here, we investigated the diversity, function, assembly, and co-occurrence patterns of skin microbiotas from 35 health human subjects across three body sites (forehead, opisthenar, and palm) and seven elevation gradients from 501 to 3431 m. Alpha diversity values (i.e., Shannon diversity and observed operational taxonomic units (OTUs)) decreased with increasing elevation regardless of the body site, while beta diversity (Jaccard and Bray–Curtis dissimilarities) showed an increasing trend with elevation. Elevation is a significant factor that influences human skin microbiota, even after controlling host-related factors. Skin microbiotas at high elevation with more than 3000 m on the Qinghai–Tibet Plateau, had a significant structural or functional separation from those at low elevation with less than 3000 m. Notably, the clustering coefficient, average degree, and network density were all lower at high-elevation than those at low-elevation, suggesting that high-elevation skin networks were more fragile and less connected. Phylogenetic analysis showed that human skin microbiotas are mainly dominated by stochastic processes (58.4%–74.6%), but skin microbiotas at high-elevation harbor a greater portion of deterministic processes than those at low-elevation, indicating that high-elevation may be conducive to the promotion of deterministic processes. Our results reveal that the filtering and selection of the changeable high-elevation environment on the Qinghai–Tibet Plateau may lead to less stable skin microbial community structures.
Collapse
Affiliation(s)
- Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining 810008, China
- Correspondence: (H.L.); (J.Q.)
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Liye Shao
- Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Hunaan Changde 415000, China
| | - Jiapeng Qu
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Correspondence: (H.L.); (J.Q.)
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, 175 Mingxiu East Road, Nanning, Guangxi 530001, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| |
Collapse
|
17
|
Medina D, Hughey MC, Walke JB, Becker MH, Pontarelli K, Sun S, Badgley B, Belden LK. Amphibian skin fungal communities vary across host species and do not correlate with infection by a pathogenic fungus. Environ Microbiol 2019; 21:2905-2920. [PMID: 31087743 DOI: 10.1111/1462-2920.14682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial-fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Vassar College, Poughkeepsie, NY, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Shan Sun
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.,College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
18
|
Bie J, Liu X, Zhang X, Wang H. Detection and comparative analysis of cutaneous bacterial communities of farmed and wild Rana dybowskii (Amphibia: Anura). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1683627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- J. Bie
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - X. Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - X. Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - H. Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Varela BJ, Lesbarrères D, Ibáñez R, Green DM. Environmental and Host Effects on Skin Bacterial Community Composition in Panamanian Frogs. Front Microbiol 2018; 9:298. [PMID: 29520260 PMCID: PMC5826957 DOI: 10.3389/fmicb.2018.00298] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022] Open
Abstract
Research on the amphibian skin microbiota has focused on identifying bacterial taxa that deter a pathogenic chytrid fungus, and on describing patterns of microbiota variation. However, it remains unclear how environmental variation affects amphibian skin bacterial communities, and whether the overall functional diversity of the amphibian skin microbiota is associated to such variation. We sampled skin microbial communities from one dendrobatoid frog species across an environmental gradient along the Panama Canal, and from three dendrobatoid frog species before and after the onset of the wet season in one site. We found frog skin microbial alpha diversity to be highest in frogs from sites with low soil pH, but no clear effect of the onset of the wet season. However, we found frog skin microbial community structure to be affected by soil pH and the onset of the wet season, which also resulted in a decrease in between-sample variation. Across the sampled frog species, bacterial functional groups changed with the onset of the wet season, with certain bacterial functional groups entirely disappearing and others differing in their relative abundances. In particular, we found the proportion of Bd-inhibitory bacteria to correlate with mean soil pH, and to increase in two of the frog species with the onset of the wet season. Taken together, our results suggest that structure and predicted function of amphibian bacterial skin communities may be influenced by environmental variables such as pH and precipitation, site effects, and host effects.
Collapse
Affiliation(s)
- Brandon J. Varela
- Department of Biology, McGill University, Montreal, QC, Canada
- Redpath Museum, McGill University, Montreal, QC, Canada
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panama City, Panama
- Departamento de Zoología, Universidad de Panamá, Panama City, Panama
| | | |
Collapse
|
20
|
Familiar López M, Rebollar EA, Harris RN, Vredenburg VT, Hero JM. Temporal Variation of the Skin Bacterial Community and Batrachochytrium dendrobatidis Infection in the Terrestrial Cryptic Frog Philoria loveridgei. Front Microbiol 2017; 8:2535. [PMID: 29312226 PMCID: PMC5744006 DOI: 10.3389/fmicb.2017.02535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
In animals and plants, symbiotic bacteria can play an important role in disease resistance of host and are the focus of much current research. Globally, amphibian population declines and extinctions have occurred due to chytridiomycosis, a skin disease caused by the pathogen Batrachochytrium dendrobatidis (Bd). Currently amphibian skin bacteria are increasingly recognized as important symbiont communities with a relevant role in the defense against pathogens, as some bacteria can inhibit the growth of B. dendrobatidis. This study aims to document the B. dendrobatidis infection status of wild populations of a terrestrial cryptic frog (Philoria loveridgei), and to determine whether infection status is correlated with changes in the skin microbial communities. Skin samples of P. loveridgei were collected along an altitudinal range within the species distribution in subtropical rainforests in southeast Australia. Sampling was conducted in two years during two breeding seasons with the first classified as a “La Niña” year. We used Taqman real-time PCR to determine B. dendrobatidis infection status and 16S amplicon sequencing techniques to describe the skin community structure. We found B. dendrobatidis-positive frogs only in the second sampling year with low infection intensities, and no correlation between B. dendrobatidis infection status and altitude, frog sex or size. Skin bacterial diversity was significantly higher in P. loveridgei frogs sampled in the 1st year than in the 2nd year. In addition, 7.4% of the total OTUs were significantly more abundant in the 1st year compared to the 2nd year. We identified 67 bacterial OTUs with a significant positive correlation between infection intensity and an OTU’s relative abundance. Forty-five percent of these OTUs belonged to the family Enterobacteriaceae. Overall, temporal variation was strongly associated with changes in B. dendrobatidis infection status and bacterial community structure of wild populations of P. loveridgei.
Collapse
Affiliation(s)
- Mariel Familiar López
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast, QLD, Australia
| | - Eria A Rebollar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, United States.,Amphibian Survival Alliance, London, United Kingdom
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Jean-Marc Hero
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast, QLD, Australia.,School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
21
|
Hughey MC, Pena JA, Reyes R, Medina D, Belden LK, Burrowes PA. Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients. PeerJ 2017; 5:e3688. [PMID: 28875068 PMCID: PMC5580383 DOI: 10.7717/peerj.3688] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Host-associated microbial communities are ubiquitous among animals, and serve important functions. For example, the bacterial skin microbiome of amphibians can play a role in preventing or reducing infection by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Evidence suggests that environmental bacteria likely serve as a source pool for at least some of the members of the amphibian skin bacterial community, underscoring the potential for local environmental changes to disrupt microbial community source pools that could be critical to the health of host organisms. However, few studies have assessed variation in the amphibian skin microbiome along clear environmental gradients, and so we know relatively little about how local environmental conditions influence microbiome diversity. We sampled the skin bacterial communities of Coqui frogs, Eleutherodactylus coqui (N = 77), along an elevational gradient in eastern Puerto Rico (0-875 m), with transects in two land use types: intact forest (N = 4 sites) and disturbed (N = 3 sites) forest. We found that alpha diversity (as assessed by Shannon, Simpson, and Phylogenetic Diversity indices) varied across sites, but this variation was not correlated with elevation or land use. Beta diversity (community structure), on the other hand, varied with site, elevation and land use, primarily due to changes in the relative abundance of certain bacterial OTUs (∼species) within these communities. Importantly, although microbiome diversity varied, E. coqui maintained a common core microbiota across all sites. Thus, our findings suggest that environmental conditions can influence the composition of the skin microbiome of terrestrial amphibians, but that some aspects of the microbiome remain consistent despite environmental variation.
Collapse
Affiliation(s)
- Myra C Hughey
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Janelle A Pena
- Department of Biology, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Roberto Reyes
- Department of Biology, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Daniel Medina
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | | |
Collapse
|
22
|
Medina D, Walke JB, Gajewski Z, Becker MH, Swartwout MC, Belden LK. Culture Media and Individual Hosts Affect the Recovery of Culturable Bacterial Diversity from Amphibian Skin. Front Microbiol 2017; 8:1574. [PMID: 28883811 PMCID: PMC5573730 DOI: 10.3389/fmicb.2017.01574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
One current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which is associated with global amphibian population declines and extinctions. As there is evidence that some skin bacteria may inhibit growth of Bd and prevent infection in some cases, there is interest in using these bacteria as probiotic therapy for conservation of at-risk amphibians. In this study, we used skin swabs from American toads (Anaxyrus americanus) to: (1) assess the diversity and community structure of culturable amphibian skin bacteria grown on high and low nutrient culture media, (2) determine which culture media recover the highest proportion of the total skin bacterial community of individual toads relative to culture-independent data, and (3) assess whether the plated communities from the distinct media types vary in their ability to inhibit Bd growth in in-vitro assays. Overall, we found that culture media with low nutrient concentrations facilitated the growth of more diverse bacterial taxa and grew distinct communities relative to media with higher nutrient concentrations. Use of low nutrient media also resulted in culturing proportionally more of the bacterial diversity on individual toads relative to the overall community defined using culture-independent methods. However, while there were differences in diversity among media types, the variation among individual hosts was greater than variation among media types, suggesting that swabbing more individuals in a population is the best way to maximize culture collections, regardless of media type. Lastly, the function of the plated communities against Bd did not vary across culture media type or between high and low nutrient media. These results inform current efforts for developing a probiotic-based approach for amphibian conservation and help to ensure that culture collections are capturing the majority of the important diversity in these systems.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Matthew H Becker
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| |
Collapse
|