1
|
Hollender M, Sałek M, Karlicki M, Karnkowska A. Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae). Protist 2024; 175:126018. [PMID: 38325049 DOI: 10.1016/j.protis.2024.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Though endosymbioses between protists and prokaryotes are widespread, certain host lineages have received disproportionate attention what may indicate either a predisposition to such interactions or limited studies on certain protist groups due to lack of cultures. The euglenids represent one such group in spite of microscopic observations showing intracellular bacteria in some strains. Here, we perform a comprehensive molecular analysis of a previously identified endosymbiont in the Eutreptiella sp. CCMP3347 using a single cell approach and bulk culture sequencing. The genome reconstruction of this endosymbiont allowed the description of a new endosymbiont Candidatus Grellia alia sp. nov. from the family Midichloriaceae. Comparative genomics revealed a remarkably complete conjugative type IV secretion system present in three copies on the plasmid sequences of the studied endosymbiont, a feature missing in the closely related Grellia incantans. This study addresses the challenge of limited host cultures with endosymbionts by showing that the genomes of endosymbionts reconstructed from single host cells have the completeness and contiguity that matches or exceeds those coming from bulk cultures. This paves the way for further studies of endosymbionts in euglenids and other protist groups. The research also provides the opportunity to study the diversity of endosymbionts in natural populations.
Collapse
Affiliation(s)
- Metody Hollender
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Marta Sałek
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
2
|
Zhang X, Bi L, Gentekaki E, Zhao J, Shen P, Zhang Q. Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea). Microorganisms 2023; 11:1500. [PMID: 37375002 DOI: 10.3390/microorganisms11061500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Microbes in marine sediments constitute up to five-sixths of the planet's total biomass, but their diversity is little explored, especially for those forming associations with unicellular protists. Heterotrophic ciliates are among the most dominant and diversified marine benthic protists and comprise hotspot niches of bacterial colonization. To date, studies using culture-independent single-cell approaches to explore microbiomes of marine benthic ciliates in nature are almost absent, even for the most ubiquitous species. Here, we characterize the major bacterial groups associated with a representative marine benthic ciliate, Geleia sp. YT, collected directly from the coastal zone of Yantai, China. PacBio sequencing of the nearly full-length 16Sr RNA genes was performed on single cells of Geleia. Fluorescence in situ hybridization (FISH) analysis with genus-specific probes was further applied to locate the dominant bacterial groups. We identified a Variovorax-like bacterium as the major epibiotic symbiont residing in the kineties of the ciliate host. We provide evidence of a nucleus-associated bacterium related to the human pathogen Mycoplasma, which appeared prevalently in the local populations of Geleia sp. YT for 4 months. The most abundant bacterial taxa associated with Geleia sp. YT likely represent its core microbiome, hinting at the important roles of the ciliate-bacteria consortium in the marine benthos. Overall, this work has contributed to the knowledge of the diversity of life in the enigmatic marine benthic ciliate and its symbioses.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- School of Ocean, Yantai University, Yantai 264003, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Luping Bi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Pingping Shen
- School of Ocean, Yantai University, Yantai 264003, China
| | - Qianqian Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
3
|
Manassero V, Vannini C. Protists' microbiome: A fine-scale, snap-shot field study on the ciliate Euplotes. Eur J Protistol 2023; 87:125952. [PMID: 36610375 DOI: 10.1016/j.ejop.2022.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Host-microbiome relationships play a fundamental role in the evolution and ecology of any living being. As unicellular organisms, protists represent a unique eukaryotic model to investigate selection mechanisms of the prokaryotic microbiome at the cellular level. Field investigations are central to disentangle relative importance of selective drivers in nature. Here we performed an analysis on data from a snap-shot field study reported previously on bacterial microbiomes associated to natural populations of protist ciliates of the genus Euplotes to detect at a fine scale any influence of habitat and/or host identity in microbiome selection. Comparative analyses revealed environment at a relatively large scale (sampling area) as the main driving factor in shaping prokaryotic communities' structures. No evidence of habitat as key-factor emerged when a smaller spatial scale was considered (pond/channel or site). When only microbiomes of ciliates from the same site were compared, a clear assessment on the influence of host identity at the species level was not achieved, probably due to the small and unbalanced number of individuals for the two considered host species. Starting from this point, wider sampling campaigns will contribute in the future to depict a general view of the drivers influencing the prokaryotic microbiomes of natural protist populations.
Collapse
Affiliation(s)
| | - Claudia Vannini
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
4
|
Boscaro V, Manassero V, Keeling PJ, Vannini C. Single-cell Microbiomics Unveils Distribution and Patterns of Microbial Symbioses in the Natural Environment. MICROBIAL ECOLOGY 2023; 85:307-316. [PMID: 35048168 DOI: 10.1007/s00248-021-01938-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Protist-bacteria associations are extremely common. Among them, those involving ciliates of the genus Euplotes are emerging as models for symbioses between prokaryotes and eukaryotes, and a great deal of information is available from cultured representatives of this system. Even so, as for most known microbial symbioses, data on natural populations is lacking, and their ecology remains largely unexplored; how well lab cultures represent actual diversity is untested. Here, we describe a survey on natural populations of Euplotes based on a single-cell microbiomic approach, focusing on taxa that include known endosymbionts of this ciliate. The results reveal an unexpected variability in symbiotic communities, with individual hosts of the same population harboring different sets of bacterial endosymbionts. Co-occurring Euplotes individuals of the same population can even have different essential symbionts, Polynucleobacter and "Candidatus Protistobacter," which might suggest that replacement events could be more frequent in nature than previously hypothesized. Accessory symbionts are even more variable: some showed a strong affinity for one host species, some for a sampling site, and two ("Candidatus Cyrtobacter" and "Candidatus Anadelfobacter") displayed an unusual pattern of competitive exclusion. These data represent the first insight into the prevalence and patterns of bacterial symbionts in natural populations of free-living protists.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Claudia Vannini
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
5
|
Rotterová J, Edgcomb VP, Čepička I, Beinart R. Anaerobic Ciliates as a Model Group for Studying Symbioses in Oxygen-depleted Environments. J Eukaryot Microbiol 2022; 69:e12912. [PMID: 35325496 DOI: 10.1111/jeu.12912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end-products to increase host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host-specificity and co-evolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.
Collapse
Affiliation(s)
- Johana Rotterová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roxanne Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
6
|
Gomaa F, Utter DR, Loo W, Lahr DJ, Cavanaugh CM. Exploring the protist microbiome: The diversity of bacterial communities associated with Arcella spp. (Tubulina: Amoebozoa). Eur J Protistol 2022; 82:125861. [DOI: 10.1016/j.ejop.2021.125861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/08/2021] [Accepted: 12/18/2021] [Indexed: 11/15/2022]
|
7
|
Xu R, Zhang M, Lin H, Gao P, Yang Z, Wang D, Sun X, Li B, Wang Q, Sun W. Response of soil protozoa to acid mine drainage in a contaminated terrace. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126790. [PMID: 34358973 DOI: 10.1016/j.jhazmat.2021.126790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/28/2023]
Abstract
Acid mine drainage (AMD) system represents one of the most unfavorable habitats for microorganisms due to its low pH and high concentrations of metals. Compared to bacteria and fungi, our understanding regarding the response of soil protozoa to such extremely acidic environments remains limited. This study characterized the structures of protozoan communities inhabiting a terrace heavily contaminated by AMD. The sharp environmental gradient of this terrace was generated by annual flooding from an AMD lake located below, which provided a natural setting to unravel the environment-protozoa interactions. Previously unrecognized protozoa, such as Apicomplexa and Euglenozoa, dominated the extremely acidic soils, rather than the commonly recognized members (e.g., Ciliophora and Cercozoa). pH was the most important factor regulating the abundance of protozoan taxa. Metagenomic analysis of protozoan metabolic potential showed that many functional genes encoding for the alleviation of acid stress and various metabolic pathways were enriched, which may facilitate the survival and adaptation of protozoa to acidic environments. In addition, numerous co-occurrences between protozoa and bacterial or fungal taxa were observed, suggesting shared environmental preferences or potential bio-interactions among them. Future studies are required to confirm the ecological roles of these previously unrecognized protozoa as being important soil microorganisms.
Collapse
Affiliation(s)
- Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; School of Environment, Henan Normal University, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, PR China.
| |
Collapse
|
8
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
9
|
Lalla C, Calvaruso R, Dick S, Reyes-Prieto A. Winogradsky columns as a strategy to study typically rare microbial eukaryotes. Eur J Protistol 2021; 80:125807. [PMID: 34091379 DOI: 10.1016/j.ejop.2021.125807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Winogradsky columns have been widely used to study soil microbial communities, but the vast majority of those investigations have focused on the ecology and diversity of bacteria. In contrast, microbial eukaryotes (ME) have been regularly overlooked in studies based on experimental soil columns. Despite the recognized ecological relevance of ME in soil communities, investigations focused on ME diversity and the abundance of certain groups of interest are still scarce. In the present study, we used DNA metabarcoding (high-throughput sequencing of the V4 region of the 18S rRNA locus) to survey the ME diversity and abundance in an experimental Winogradsky soil column. Consistent with previous surveys in natural soils, our survey identified members of Cercozoa (Rhizaria; 31.2%), Apicomplexa and Ciliophora (Alveolata; 12.5%) as the predominant ME groups, but at particular depths we also detected the abundant presence of ME lineages that are typically rare in natural environments, such as members of the Vampyrellida (Rhizaria) and Breviatea (Amorphea). Our survey demonstrates that experimental soil columns are an efficient enrichment-culture approach that can enhance investigations about the diversity and ecology of ME in soils.
Collapse
Affiliation(s)
- Clarissa Lalla
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Rossella Calvaruso
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Sophia Dick
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
10
|
Firkins JL, Yu Z, Park T, Plank JE. Extending Burk Dehority's Perspectives on the Role of Ciliate Protozoa in the Rumen. Front Microbiol 2020; 11:123. [PMID: 32184759 PMCID: PMC7058926 DOI: 10.3389/fmicb.2020.00123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 01/22/2023] Open
Abstract
Dr. Burk Dehority was an international expert on the classification and monoculture of ruminal ciliated protozoa. We have summarized many of the advancements in knowledge from his work but also in his scientific way of thinking about interactions of ruminal ciliates with the entire rumen microbial community and animal host. As a dedication to his legacy, an electronic library of high-resolution images and video footage catalogs numerous species and techniques involved in taxonomy, isolation, culture, and ecological assessment of ruminal ciliate species and communities. Considerable promise remains to adapt these landmark approaches to harness eukaryotic cell signaling technology with genomics and transcriptomics to assess cellular mechanisms regulating growth and responsiveness to ruminal environmental conditions. These technologies can be adapted to study how protozoa interact (both antagonism and mutualism) within the entire ruminal microbiota. Thus, advancements and limitations in approaches used are highlighted such that future research questions can be posed to study rumen protozoal contribution to ruminant nutrition and productivity.
Collapse
Affiliation(s)
- Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Johanna E Plank
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. SCIENCE ADVANCES 2020; 6:eaax8787. [PMID: 32042898 PMCID: PMC6981079 DOI: 10.1126/sciadv.aax8787] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/21/2019] [Indexed: 05/11/2023]
Abstract
Protists are ubiquitous in soil, where they are key contributors to nutrient cycling and energy transfer. However, protists have received far less attention than other components of the soil microbiome. We used amplicon sequencing of soils from 180 locations across six continents to investigate the ecological preferences of protists and their functional contributions to belowground systems. We complemented these analyses with shotgun metagenomic sequencing of 46 soils to validate the identities of the more abundant protist lineages. We found that most soils are dominated by consumers, although parasites and phototrophs are particularly abundant in tropical and arid ecosystems, respectively. The best predictors of protist composition (primarily annual precipitation) are fundamentally distinct from those shaping bacterial and archaeal communities (namely, soil pH). Some protists and bacteria co-occur globally, highlighting the potential importance of these largely undescribed belowground interactions. Together, this study allowed us to identify the most abundant and ubiquitous protists living in soil, with our work providing a cross-ecosystem perspective on the factors structuring soil protist communities and their likely contributions to soil functioning.
Collapse
Affiliation(s)
- Angela M. Oliverio
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, Netherlands
| | - Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles 28933, Spain
| | - Fernando T. Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles 28933, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Alicante, Spain
| | - Benjamin L. Turner
- Smithsonian Tropical Research Institute, Apartado 0843-03092 Balboa, Ancón, Republic of Panama
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Lanzoni O, Plotnikov A, Khlopko Y, Munz G, Petroni G, Potekhin A. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci Rep 2019; 9:11356. [PMID: 31388025 PMCID: PMC6684585 DOI: 10.1038/s41598-019-47701-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont “Candidatus Megaira polyxenophila”. Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.
Collapse
Affiliation(s)
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Yuri Khlopko
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
13
|
Plotnikov AO, Balkin AS, Gogoleva NE, Lanzoni O, Khlopko YA, Cherkasov SV, Potekhin AA. High-Throughput Sequencing of the 16S rRNA Gene as a Survey to Analyze the Microbiomes of Free-Living Ciliates Paramecium. MICROBIAL ECOLOGY 2019; 78:286-298. [PMID: 30661111 DOI: 10.1007/s00248-019-01321-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Ciliates are the largest group of ubiquitous aquatic bacterivorous protists, and many species are easily cultivated. However, only few studies reported prokaryotic communities naturally associated with ciliate cells. Herein, we analyzed the microbiome composition of several strains of Paramecium (Ciliophora) originating from different locations and belonging to two morpho-species by high-throughput sequencing (HTS) of the 16S rRNA gene. Possible reasons of HTS results bias were addressed comparing DNA libraries obtained using different primers and different number of ciliate cells. Microbiomes associated with ciliates and their environments were always significantly different by prokaryotic taxonomic composition and bacterial richness. There were also pronounced differences between Paramecium strains. Interestingly, potentially pathogenic bacteria were revealed in Paramecium microbiomes.
Collapse
Affiliation(s)
- Andrey O Plotnikov
- "Persistence of microorganisms" Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia.
| | - Alexander S Balkin
- "Persistence of microorganisms" Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of Russian Academy of Sciences, Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Yuri A Khlopko
- "Persistence of microorganisms" Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| | - Sergey V Cherkasov
- Laboratory of biomedical technologies, Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| | - Alexey A Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|