1
|
Chen X, Wang M, Luo L, An L, Liu X, Fang Y, Huang T, Nie Y, Wu XL. High immigration rates critical for establishing emigration-driven diversity in microbial communities. Cell Syst 2024; 15:275-285.e4. [PMID: 38401538 DOI: 10.1016/j.cels.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/03/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Unraveling the mechanisms governing the diversity of ecological communities is a central goal in ecology. Although microbial dispersal constitutes an important ecological process, the effect of dispersal on microbial diversity is poorly understood. Here, we sought to fill this gap by combining a generalized Lotka-Volterra model with experimental investigations. Our model showed that emigration increases the diversity of the community when the immigration rate crosses a defined threshold, which we identified as Ineutral. We also found that at high immigration rates, emigration weakens the relative abundance of fast-growing species and thus enhances the mass effect and increases the diversity. We experimentally confirmed this finding using co-cultures of 20 bacterial strains isolated from the soil. Our model further showed that Ineutral decreases with the increase of species pool size, growth rate, and interspecies interaction. Our work deepens the understanding of the effects of dispersal on the diversity of natural communities.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Engineering, Peking University, Beijing 100871, China; Institute of Ocean Research, Peking University, Beijing 100871, China
| | - Miaoxiao Wang
- Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland; Department of Environmental Microbiology, Eawag, Dübendorf 8600, Switzerland
| | - Laipeng Luo
- College of Engineering, Peking University, Beijing 100871, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing 100871, China
| | - Yuan Fang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Ting Huang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; Institute of Ocean Research, Peking University, Beijing 100871, China; Institute of Ecology, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Bonal M, Goetghebuer L, Joseph C, Gonze D, Faust K, George IF. Deciphering Interactions Within a 4-Strain Riverine Bacterial Community. Curr Microbiol 2023; 80:238. [PMID: 37294449 DOI: 10.1007/s00284-023-03342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
The dynamics of a community of four planktonic bacterial strains isolated from river water was followed in R2 broth for 72 h in batch experiments. These strains were identified as Janthinobacterium sp., Brevundimonas sp., Flavobacterium sp. and Variovorax sp. 16S rRNA gene sequencing and flow cytometry analyses were combined to monitor the change in abundance of each individual strain in bi-cultures and quadri-culture. Two interaction networks were constructed that summarize the impact of the strains on each other's growth rate in exponential phase and carrying capacity in stationary phase. The networks agree on the absence of positive interactions but also show differences, implying that ecological interactions can be specific to particular growth phases. Janthinobacterium sp. was the fastest growing strain and dominated the co-cultures. However, its growth rate was negatively affected by the presence of other strains 10 to 100 times less abundant than Janthinobacterium sp. In general, we saw a positive correlation between growth rate and carrying capacity in this system. In addition, growth rate in monoculture was predictive of carrying capacity in co-culture. Taken together, our results highlight the necessity to take growth phases into account when measuring interactions within a microbial community. In addition, evidence that a minor strain can greatly influence the dynamics of a dominant one underlines the necessity to choose population models that do not assume a linear dependency of interaction strength to abundance of other species for accurate parameterization from such empirical data.
Collapse
Affiliation(s)
- Mathias Bonal
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Lise Goetghebuer
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Clémence Joseph
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology, Faculty of Sciences, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium.
- Laboratory of Marine Biology, Department of Biology, Université Libre de Bruxelles, 1050, Brussels, Belgium.
| |
Collapse
|