1
|
Castro LGZ, Sousa MR, Pereira LÉC, Martins DV, Oliveira FAS, Bezerra SGS, Melo VMM, Hissa DC. Pioneer access of the foam nest bacterial community of Leptodactylidae frogs and its biotechnological potential. BRAZ J BIOL 2024; 84:e280884. [PMID: 38922194 DOI: 10.1590/1519-6984.280884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 06/27/2024] Open
Abstract
Many anuran amphibians deposit their eggs in foam nests, biostructures that help protect the eggs and tadpoles from predators. Currently, there are no other identification and description studies of the cultivable microbiota role in the nests of the Leptodactylid frogs such as Physalaemus cuvieri, Leptodactylus vastus and Adenomera hylaedactyla. This study aimed to isolate and identify the culturable bacteria from these three anuran species' nests, as well as to prospect enzymes produced by this microbiota. Foam nests samples and environmental samples were diluted and viable cell count was determined. Bacterial morphotypes from foam nest samples were isolated through spread plate technique. Isolates' DNAs were extracted followed by rRNA 16S gene amplification and Sanger sequencing. To evaluate their enzymatic potential, the isolates were cultured in ATGE medium supplemented with starch (0.1% w/v), gelatin (3% w/v) and skimmed milk (1% w/v), to verify amylase and protease activity. A total of 183 bacterial morphotypes were isolated, comprising 33 bacterial genera. Proteobacteria phylum was the most abundant in all the three nests (79%). The genera Pseudomonas and Aeromonas were the most abundant taxon in P. cuvieri and L. vastus. In A. Hylaedactyla, were Enterobacter and Bacillus. Regarding enzymatic activities, 130 isolates displayed protease activity and 45 isolates were positive for amylase activity. Our results provide unprecedented information concerning culturable bacterial microbiota of the foam nests of the Leptodactylid frogs, as well as their potential for biomolecules of biotechnological interest.
Collapse
Affiliation(s)
- L G Z Castro
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - M R Sousa
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - L É C Pereira
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - D V Martins
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - F A S Oliveira
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - S G S Bezerra
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - V M M Melo
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| | - D C Hissa
- Universidade Federal do Ceará - UFC, Departamento de Biologia, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Campos PM, Lucid MK, Ehlers S, Walke JB. Low-level pathogen infection and geographic location correlate with the skin microbiomes of Columbia spotted frogs ( Rana luteiventris) in a montane landscape. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100213. [PMID: 38187998 PMCID: PMC10770434 DOI: 10.1016/j.crmicr.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The skin microbiome of amphibians can influence host susceptibility towards the fungal pathogen Batrachochytrium dendrobatidis (Bd), while simultaneously having the potential to be altered by Bd. Severe Bd infections are known to alter the amphibian skin microbiome; however, little is known about microbiome interactions in amphibians with low infection intensity. In addition to disease dynamics, environmental factors may influence the microbiome. To test for patterns in bacterial diversity based on pathogen infection and environmental factors, 399 Columbia spotted frogs (Rana luteiventris) were sampled throughout northern Idaho and northeastern Washington across two years. Bd prevalence and intensity were measured in 376 frogs, revealing a prevalence of 69%, but generally low infection intensity (Mean = 127 Bd zoospore equivalents among infected frogs). Skin bacterial communities were characterized in 92 frogs using 16S rRNA gene amplicon sequencing. Our results indicated correlations of decreasing Shannon diversity and evenness as infection intensity increased. Latitude was correlated with bacterial richness and Faith's Phylogenetic Diversity measures, indicating increased diversity in northern locations. Beta diversity (UniFrac) analyses revealed that skin microbiomes were distinct between infected and uninfected frogs, and infection intensity had a significant effect on microbiome composition. Site explained the majority of microbiome variation (weighted UniFrac: 57.5%), suggesting a combination of local habitat conditions explain variation, as only small proportions of variation could be explained by year, month, temperature, elevation, and latitude individually. Bacterial genera with potential for Bd-inhibitory properties were found with differential relative abundance in infected and uninfected frogs, with higher Stenotrophomonas and lower Pseudomonas relative abundance observed in infected frogs. Further study may indicate if Bd inhibition by members of the skin microbiome is an influence behind the low infection intensities observed and whether low Bd infection intensities are capable of altering skin microbiome composition.
Collapse
Affiliation(s)
- Philip M. Campos
- Department of Biology, Eastern Washington University, 1175 Washington St., Cheney, WA 99004, USA
| | - Michael K. Lucid
- Idaho Department of Fish and Game, 2885 Kathleen Ave., Coeur d'Alene, ID 83815, USA
- Selkirk Wildlife Science, LLC, PO Box 733, Sandpoint, ID 83864, USA
| | - Shannon Ehlers
- Idaho Department of Fish and Game, 2885 Kathleen Ave., Coeur d'Alene, ID 83815, USA
- U.S. Fish and Wildlife Service, 287 Westside Rd., Bonners Ferry, ID 83805, USA
| | - Jenifer B. Walke
- Department of Biology, Eastern Washington University, 1175 Washington St., Cheney, WA 99004, USA
| |
Collapse
|
3
|
Kaganer AW, Ossiboff RJ, Keith NI, Schuler KL, Comizzoli P, Hare MP, Fleischer RC, Gratwicke B, Bunting EM. Immune priming prior to pathogen exposure sheds light on the relationship between host, microbiome and pathogen in disease. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220810. [PMID: 36756057 PMCID: PMC9890126 DOI: 10.1098/rsos.220810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment. Most animals survived high Bd loads regardless of their vaccination status and vaccination did not affect pathogen load, but host gene expression differed based on vaccination. Oral vaccination (exposure to killed Bd) stimulated immune gene upregulation while topically and sham-vaccinated animals did not significantly upregulate immune genes. In early infection, topically vaccinated animals upregulated immune genes but orally and sham-vaccinated animals downregulated immune genes. Bd increased pathogenicity-associated gene expression in late infection when Bd loads were highest. The microbiome was altered by Bd, but there was no correlation between anti-Bd microbe abundance or richness and pathogen burden. Our observations suggest that hellbenders initially generate a vigorous immune response to Bd, which is ineffective at controlling disease and is subsequently modulated. Interactions with antifungal skin microbiota did not influence disease progression.
Collapse
Affiliation(s)
- Alyssa W. Kaganer
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
| | - Robert J. Ossiboff
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole I. Keith
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Biology Department, Hamilton College, Clinton, NY, 13323, USA
| | - Krysten L. Schuler
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Matthew P. Hare
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Robert C. Fleischer
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Elizabeth M. Bunting
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Grunberg RL, Joyner BN, Mitchell CE. Historical contingency in parasite community assembly: Community divergence results from early host exposure to symbionts and ecological drift. PLoS One 2023; 18:e0285129. [PMID: 37192205 DOI: 10.1371/journal.pone.0285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
Host individuals are commonly coinfected with multiple parasite species that may interact to shape within-host parasite community structure. In addition to within-host species interactions, parasite communities may also be structured by other processes like dispersal and ecological drift. The timing of dispersal (in particular, the temporal sequence in which parasite species infect a host individual) can alter within-host species interactions, setting the stage for historical contingency by priority effects, but how persistently such effects drive the trajectory of parasite community assembly is unclear, particularly under continued dispersal and ecological drift. We tested the role of species interactions under continued dispersal and ecological drift by simultaneously inoculating individual plants of tall fescue with a factorial combination of three symbionts (two foliar fungal parasites and a mutualistic endophyte), then deploying the plants in the field and tracking parasite communities as they assembled within host individuals. In the field, hosts were exposed to continued dispersal from a common pool of parasites, which should promote convergence in the structure of within-host parasite communities. Yet, analysis of parasite community trajectories found no signal of convergence. Instead, parasite community trajectories generally diverged from each other, and the magnitude of divergence depended on the initial composition of symbionts within each host, indicating historical contingency. Early in assembly, parasite communities also showed evidence of drift, revealing another source of among-host divergence in parasite community structure. Overall, these results show that both historical contingency and ecological drift contributed to divergence in parasite community assembly within hosts.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooklynn N Joyner
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
5
|
First Survey of the Pathogenic Fungus Batrachochytrium dendrobatidis in Wild Populations of the Yunnan Caecilian (Ichthyophis bannanicus) in Guangxi, China. J Wildl Dis 2022; 58:450-453. [PMID: 35113986 DOI: 10.7589/jwd-d-21-00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022]
Abstract
Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, mainly infects Anura and Caudata but is poorly known in Gymnophiona. We conducted a survey of Bd in the Yunnan caecilian (Ichthyophis bannanicus) and found that 6 of 71 samples (8.4%) tested positive for Bd. To our knowledge, this is the first detection of Bd in wild I. bannanicus.
Collapse
|
6
|
Li Z, Li A, Hoyt JR, Dai W, Leng H, Li Y, Li W, Liu S, Jin L, Sun K, Feng J. Activity of bacteria isolated from bats against Pseudogymnoascus destructans in China. Microb Biotechnol 2022; 15:469-481. [PMID: 33559264 PMCID: PMC8867990 DOI: 10.1111/1751-7915.13765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
White-nose syndrome, a disease that is caused by the psychrophilic fungus Pseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected with P. destructans but show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limiting P. destructans growth remains unexplored. We isolated three bacterial strains with the ability to inhibit P. destructans, namely, Pseudomonas yamanorum GZD14026, Pseudomonas brenneri XRD11711 and Pseudomonas fragi GZD14479, from bats in China. Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibiting P. destructans as phenazine-1-carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 μg ml-1 . Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography-mass spectrometry (GC-MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3-tert-butyl-4-hydroxyanisole (isoprenol) and 100 ppm 3-methyl-3-buten-1-ol (BHA) inhibited the growth of P. destructans. These results support that bacteria may play a role in limiting the growth of P. destructans on bats.
Collapse
Affiliation(s)
- Zhongle Li
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchun130018China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
- Key Laboratory of Vegetation EcologyMinistry of EducationChangchun130024China
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia Polytechnic InstituteBlacksburgVA24060USA
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Yanfei Li
- College of Chinese Medicine MaterialsJilin Agricultural UniversityChangchun130118China
| | - Wei Li
- College of Chinese Medicine MaterialsJilin Agricultural UniversityChangchun130118China
| | - Sen Liu
- Institute of Resources and EnvironmentHenan Polytechnic UniversityJiaozuo454000China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
- Key Laboratory of Vegetation EcologyMinistry of EducationChangchun130024China
| | - Jiang Feng
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchun130018China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal University2555 Jingyue StreetChangchun130117China
| |
Collapse
|
7
|
Mutnale MC, Reddy GS, Vasudevan K. Bacterial Community in the Skin Microbiome of Frogs in a Coldspot of Chytridiomycosis Infection. MICROBIAL ECOLOGY 2021; 82:554-558. [PMID: 33442763 PMCID: PMC8384794 DOI: 10.1007/s00248-020-01669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Chytridiomycosis is a fungal disease caused by the pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), which has caused declines in amphibian populations worldwide. Asia is considered as a coldspot of infection, since adult frogs are less susceptible to Bd-induced mortality or morbidity. Using the next-generation sequencing approach, we assessed the cutaneous bacterial community composition and presence of anti-Bd bacteria in six frog species from India using DNA isolated from skin swabs. All the six frog species sampled were tested using nested PCR and found Bd negative. We found a total of 551 OTUs on frog skin, of which the bacterial phyla such as Proteobacteria (56.15% average relative abundance) was dominated followed by Actinobacteria (21.98% average relative abundance) and Firmicutes (13.7% average relative abundance). The contribution of Proteobacteria in the anti-Bd community was highest and represented by 175 OTUs. Overall, the anti-Bd bacterial community dominated (51.7% anti-Bd OTUs) the skin microbiome of the frogs. The study highlights the putative role of frog skin microbiome in affording resistance to Bd infections in coldspots of infection.
Collapse
Affiliation(s)
- Milind C Mutnale
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Gundlapally S Reddy
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Proença DN, Fasola E, Lopes I, Morais PV. Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax perezi Inhabiting Different Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052585. [PMID: 33807539 PMCID: PMC7967507 DOI: 10.3390/ijerph18052585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog (Pelophylax perezi) that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog’s skin swabs were collected from P. perezi populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce extracellular polymeric substances (exopolysaccharide, EPS). All frog populations had Acinetobacter in their cutaneous cultivable microbiota. Significant growth inhibition was observed in all bacterial isolates exposed to 75% of AMD. EPS production was considered a characteristic of several isolates. The data obtained is a preliminary step but crucial to sustain that the cultivable microbiota is a mechanism for protecting frogs against environmental contamination.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Emanuele Fasola
- CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; (E.F.); (I.L.)
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; (E.F.); (I.L.)
| | - Paula V. Morais
- Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Correspondence: ; Tel.: +35-1239240700
| |
Collapse
|
9
|
Kruger A. Frog Skin Microbiota Vary With Host Species and Environment but Not Chytrid Infection. Front Microbiol 2020; 11:1330. [PMID: 32670233 PMCID: PMC7328345 DOI: 10.3389/fmicb.2020.01330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
Describing the structure and function of the amphibian cutaneous microbiome has gained importance with the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen that can cause the skin disease chytridiomycosis. Sampling amphibian skin microbiota is needed to characterize current infection status and to help predict future susceptibility to Bd based on microbial composition since some skin microbes have antifungal capabilities that may confer disease resistance. Here, I use 16S rRNA sequencing to describe the composition and structure of the cutaneous microbiota of six species of amphibians. Frog skin samples were also tested for Bd, and I found 11.8% Bd prevalence among all individuals sampled (n = 76). Frog skin microbiota varied by host species and sampling site, but did not differ among Bd-positive and Bd-negative individuals. These results suggest that bacterial composition reflects host species and the environment, but does not reflect Bd infection among the species sampled here. Of the bacterial OTUs identified using an indicator species analysis as strongly associated with amphibians, significantly more indicator OTUs were putative anti-Bd taxa than would be expected based on the proportion of anti-Bd OTUs among all frog OTUs, suggesting strong associations between host species and anti-Bd OTUs. This relationship may partially explain why some of these frogs are asymptomatic carriers of Bd, but more work is needed to determine the other factors that contribute to interspecific variation in Bd susceptibility. This work provides important insights on inter- and intra-specific variation in microbial community composition, putative function, and disease dynamics in populations of amphibians that appear to be coexisting with Bd.
Collapse
Affiliation(s)
- Ariel Kruger
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
10
|
Barnes EM, Carter EL, Lewis JD. Predicting Microbiome Function Across Space Is Confounded by Strain-Level Differences and Functional Redundancy Across Taxa. Front Microbiol 2020; 11:101. [PMID: 32117131 PMCID: PMC7018939 DOI: 10.3389/fmicb.2020.00101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
Variation in the microbiome among individual organisms may play a critical role in the relative susceptibility of those organisms to infection, disease, and death. However, predicting microbiome function is difficult because of spatial and temporal variation in microbial diversity, and taxonomic diversity is not predictive of microbiome functional diversity. Addressing this issue may be particularly important when addressing pandemic diseases, such as the global amphibian die-off associated with Bd. Some of the most important factors in probiotic development for disease treatment are whether bacteria with desired function can be found on native amphibians in the local environment. To address this issue, we isolated, sequenced, and assayed the cutaneous bacterial communities of Plethodon cinereus along a gradient of land use change. Our results suggest that cutaneous community composition, but not overall diversity, change with changes in land use, but this does not correspond to significant change in Bd-inhibitory function. We found that Bd-inhibition is a functionally redundant trait, but that level of inhibition varies over phylogenetic, spatial, and temporal scales. This research provides further evidence for the importance of continued examination of amphibian microbial communities across environmental gradients, including biotic and abiotic interactions, when considering disease dynamics.
Collapse
Affiliation(s)
- Elle M Barnes
- Department of Biological Sciences, Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, United States.,Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| | - Erin L Carter
- Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| | - J D Lewis
- Department of Biological Sciences, Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, United States.,Department of Biological Sciences and Center for Urban Ecology, Fordham University, Bronx, NY, United States
| |
Collapse
|