1
|
Ogwu MC, Patterson ME, Senchak PA. Phosphorus mining and bioavailability for plant acquisition: environmental sustainability perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:572. [PMID: 40259044 PMCID: PMC12011931 DOI: 10.1007/s10661-025-14012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/10/2025] [Indexed: 04/23/2025]
Abstract
This review aims to examine microbial mechanisms for phosphorus (P) solubilization, assess the impacts of P mining and scarcity, and advocate for sustainable recycling strategies to enhance agricultural and environmental resilience. Phosphorus is an indispensable macronutrient for plant growth and agricultural productivity, yet its bioavailability in cultivation systems is often constrained. This scarcity has led to a heavy reliance on fertilizers derived from mined phosphate rock (PR), which is a finite resource usually contaminated with hazardous elements such as uranium, radium, and thorium. Plants absorb only about 10-20% of P from applied fertilizers, leading to significant inefficiencies and negative environmental consequences. Additionally, the uneven geographic distribution of PR reserves exacerbates global socioeconomic and geopolitical vulnerabilities. Healthy soils enriched with diverse microbial communities provide a sustainable avenue to address these growing challenges. Rhizospheric organisms, including phosphorus-solubilizing and phosphorus-mineralizing bacteria and arbuscular mycorrhizal fungi, are capable and pivotal in the sustainable conversion of inorganic and organic P into bioavailable forms, reducing reliance on synthetic fertilizers. The mechanisms used by these microbes often include releasing organic acids to lower soil pH and solubilize insoluble inorganic phosphorus compounds and the production of enzymes, such as phosphatases and phytases, to break down organic phosphorus compounds, including phytates, into bioavailable inorganic phosphate. Some microbes secrete chelating agents, such as siderophores, to bind metal ions and free phosphorus from insoluble complexes and use biofilms for P exchange. This review also advocates for the recycling second-generation P from organic waste as a sustainable and socially equitable alternative to conventional phosphate mining.
Collapse
Affiliation(s)
- Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Living Learning Center, Appalachian State University, 212, 305 Bodenheimer Drive, Boone, NC, 28608, USA.
| | - Micaela Elizabeth Patterson
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| | - Pia Angelina Senchak
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| |
Collapse
|
2
|
Dixon MM, Afkairin A, Manter DK, Vivanco J. Rhizosphere Microbiome Co-Occurrence Network Analysis across a Tomato Domestication Gradient. Microorganisms 2024; 12:1756. [PMID: 39338431 PMCID: PMC11434442 DOI: 10.3390/microorganisms12091756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
When plant-available phosphorus (P) is lost from a soil solution, it often accumulates in the soil as a pool of unavailable legacy P. To acquire legacy P, plants employ recovery strategies, such as forming associations with soil microbes. However, the degree to which plants rely on microbial associations for this purpose varies with crop domestication and subsequent breeding. Here, by generating microbial co-occurrence networks, we sought to explore rhizosphere bacterial interactions in low-P conditions and how they change with tomato domestication and breeding. We grew wild tomato, traditional tomato (developed circa 1900), and modern tomato (developed circa 2020) in high-P and low-P soil throughout their vegetative developmental stage. Co-occurrence network analysis revealed that as the tomatoes progressed along the stages of domestication, the rhizosphere microbiome increased in complexity in a P deficit. However, with the addition of P fertilizer, the wild tomato group became more complex, surpassing the complexity of traditional and modern tomato, suggesting a high degree of responsiveness in the rhizosphere microbiome to P fertilizer by wild tomato relatives. By illustrating these changing patterns of network complexity in the tomato rhizosphere microbiome, we can further understand how plant domestication and breeding have shaped plant-microbe interactions.
Collapse
Affiliation(s)
- Mary M Dixon
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Antisar Afkairin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel K Manter
- United States Department of Agriculture-Agricultural Research Service, Soil Management and Sugar Beet Research, Fort Collins, CO 80526, USA
| | - Jorge Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Wang Z, Dai Q, Su D, Zhang Z, Tian Y, Tong J, Chen S, Yan C, Yang J, Cui X. Comparative analysis of the microbiomes of strawberry wild species Fragaria nilgerrensis and cultivated variety Akihime using amplicon-based next-generation sequencing. Front Microbiol 2024; 15:1377782. [PMID: 38873161 PMCID: PMC11169695 DOI: 10.3389/fmicb.2024.1377782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.
Collapse
Affiliation(s)
- Zongneng Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Qingzhong Dai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Congwen Yan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Zhou B, Cheng S, Peng S, Li W, Li C, Wang Q, Wang Y, Guo J. Response of bacterial community structure to different phosphorus additions in a tobacco-growing soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1344733. [PMID: 38516665 PMCID: PMC10954889 DOI: 10.3389/fpls.2024.1344733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Introduction Phosphorus (P), which plays a vital role in plant growth, is continually added to soil to maximize biomass production, leading to excessive P accumulation and water eutrophication. Results In this study, a pot experiment using a subtropical tobacco-growing soil fertilized with four P levels-no P, low P, medium P, and high P-was conducted and rhizosphere and bulk soils were analyzed. Results P addition significantly increased tobacco biomass production (except under low P input) and total soil P and available P content (P<0.05), whereas total nitrogen content decreased in the rhizosphere soils, although this was only significant with medium P application. P fertilization also significantly altered the bacterial communities of rhizosphere soils (P<0.05), but those of bulk soils were unchanged (P>0.05). Moreover, a significant difference was found between rhizosphere soils with low (LR) and high (HR) P inputs (P<0.05). Additionally, compared with rhizosphere soils with no P (CKR), Shannon diversity showed a declining trend, which was significant with LR and HR (P<0.05), whereas an increasing tendency was observed for Chao1 diversity except in LR (P>0.05). Functional prediction revealed that P application significantly decreased the total P and N metabolism of microorganisms in rhizosphere soils (P<0.05). Discussion Collectively, our results indicate that maintaining sustainable agricultural ecosystems under surplus P conditions requires more attention to be directed toward motivating the potential of soil functional microbes in P cycling, rather than just through continual P input.
Collapse
Affiliation(s)
- Beibei Zhou
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiqian Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuang Peng
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenqing Li
- Fujian Tobacco Research Institute, Fuzhou, China
| | - Chunying Li
- Fujian Tobacco Research Institute, Fuzhou, China
| | - Qianqian Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinping Guo
- Fujian Tobacco Research Institute, Fuzhou, China
| |
Collapse
|
5
|
Afkairin A, Dixon MM, Buchanan C, Ippolito JA, Manter DK, Davis JG, Vivanco JM. Harnessing Phosphorous (P) Fertilizer-Insensitive Bacteria to Enhance Rhizosphere P Bioavailability in Legumes. Microorganisms 2024; 12:353. [PMID: 38399758 PMCID: PMC10892362 DOI: 10.3390/microorganisms12020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphorous (P) is widely used in agriculture; yet, P fertilizers are a nonrenewable resource. Thus, mechanisms to improve soil P bioavailability need to be found. Legumes are efficient in P acquisition and, therefore, could be used to develop new technologies to improve soil P bioavailability. Here, we studied different species and varieties of legumes and their rhizosphere microbiome responses to low-P stress. Some varieties of common beans, cowpeas, and peas displayed a similar biomass with and without P fertilization. The rhizosphere microbiome of those varieties grown without P was composed of unique microbes displaying different levels of P solubilization and mineralization. When those varieties were amended with P, some of the microbes involved in P solubilization and mineralization decreased in abundance, but other microbes were insensitive to P fertilization. The microbes that decreased in abundance upon P fertilization belonged to groups that are commonly used as biofertilizers such as Pseudomonas and Azospirillum. The microbes that were not affected by P fertilization constitute unique species involved in P mineralization such as Arenimonas daejeonensis, Hyphomicrobium hollandicum, Paenibacillus oenotherae, and Microlunatus speluncae. These P-insensitive microbes could be used to optimize P utilization and drive future sustainable agricultural practices to reduce human dependency on a nonrenewable resource.
Collapse
Affiliation(s)
- Antisar Afkairin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA; (A.A.); (M.M.D.)
| | - Mary M. Dixon
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA; (A.A.); (M.M.D.)
| | - Cassidy Buchanan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.B.); (J.A.I.)
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.B.); (J.A.I.)
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel K. Manter
- Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Jessica G. Davis
- Agricultural Experiment Station, Colorado State University, Fort Collins, CO 80523, USA
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA; (A.A.); (M.M.D.)
| |
Collapse
|
6
|
Zheng W, Zheng X, Wu Y, Lv S, Ge C, Wang X, Wang Q, Cui J, Ren N, Chen Y. Diversity Temporal-Spatial Dynamics of Potato Rhizosphere Ciliates and Contribution to Nitrogen- and Carbon-Derived Nutrition in North-East China. PLANTS (BASEL, SWITZERLAND) 2023; 12:2260. [PMID: 37375886 DOI: 10.3390/plants12122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Ciliates are an important component of the rhizosphere microorganism community, but their nutritional contribution to plants has not been fully revealed. In this paper, we investigated the rhizosphere ciliate community of potatoes during six growth stages, illustrated the spatial-temporal dynamics of composition and diversity, and analyzed the correlation between soil physicochemical properties. The contributions of ciliates to the carbon- and nitrogen-derived nutrition of potatoes were calculated. Fifteen species of ciliates were identified, with higher diversity in the top soil, which increased as the potatoes grew, while they were more abundant in the deep soil, and the number decreased as the potatoes grew. The highest number of species of ciliates appeared in July (seedling stage). Among the five core species of ciliates, Colpoda sp. was the dominant species in all six growth stages. Multiple physicochemical properties affected the rhizosphere ciliate community, with ammonium nitrogen (NH4+-N) and the soil water content (SWC) greatly influencing ciliate abundance. The key correlation factors of ciliates diversity were NH4+-N, available phosphorus (AP), and soil organic matter (SOM). The annual average contribution rates of carbon and nitrogen by rhizosphere ciliates to potatoes were 30.57% and 23.31%, respectively, with the highest C/N contribution rates reaching 94.36% and 72.29% in the seedling stage. This study established a method for estimating the contributions of carbon and nitrogen by ciliates to crops and found that ciliates could be potential organic fertilizer organisms. These results might be used to improve water and nitrogen management in potato cultivation and promote ecological agriculture.
Collapse
Affiliation(s)
- Weibin Zheng
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaodan Zheng
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuqing Wu
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shaoyang Lv
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chang Ge
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiang Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qiuhong Wang
- Crop Academy, Heilongjiang University, Harbin 150080, China
| | - Jingjing Cui
- Crop Academy, Heilongjiang University, Harbin 150080, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ying Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Zhang L, Bai J, Zhai Y, Zhang K, Wei Z, Wang Y, Liu H, Xiao R, Jorquera MA. Antibiotics affected the bacterial community structure and diversity in pore water and sediments with cultivated Phragmites australis in a typical Chinese shallow lake. Front Microbiol 2023; 14:1155526. [PMID: 36998397 PMCID: PMC10043375 DOI: 10.3389/fmicb.2023.1155526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The migration of antibiotics and bacterial communities between sediments and pore water occurring in the lake, which is affected by aquatic vegetation. However, the differences in bacterial community structure and biodiversity between pore water and sediments with plants in lakes under antibiotic stress are still poorly understood. We collected pore water and sediments in both wild and cultivated Phragmites australis regions in the Zaozhadian (ZZD) Lake to explore the characteristics of the bacterial community. Our results showed that the diversity of bacterial community in sediment samples were significantly higher than those in pore water samples in both P. australis regions. Due to higher antibiotic levels in sediments from the cultivated P. australis region, the composition of bacterial communities showed a difference, which reduced the relative abundance of dominant phyla in pore water and increased that in sediments. The higher bacterial variations in pore water could be explained by sediment in the cultivated P. australis region than that in wild P. australis region, therefore plant cultivation might change the source-sink pattern between sediments and pore water. The dominant factors shaping the bacterial communities in the wild P. australis region pore water or sediment were NH4-N, NO3-N, and particle size, while cultivated P. australis region pore water or sediment were oxytetracycline, tetracycline, etc. The findings of this work indicates that the antibiotic pollution caused by planting activities has a greater impact on the bacterial community, which will provide a reference for the use and management of antibiotics in lake ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing, China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, China
- *Correspondence: Junhong Bai,
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Zhuoqun Wei
- School of Environment, Beijing Normal University, Beijing, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing, China
| | - Haizhu Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Rong Xiao
- College of Environment and Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
8
|
Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria. Sci Rep 2023; 13:4050. [PMID: 36899103 PMCID: PMC10006420 DOI: 10.1038/s41598-023-30915-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Low phosphorus (P) availability in soils is a major challenge for sustainable food production, as most soil P is often unavailable for plant uptake and effective strategies to access this P are limited. Certain soil occurring bacteria and root exudate-derived compounds that release P are in combination promising tools to develop applications that increase phosphorus use efficiency in crops. Here, we studied the ability of root exudate compounds (galactinol, threonine, and 4-hydroxybutyric acid) induced under low P conditions to stimulate the ability of bacteria to solubilize P. Galactinol, threonine, and 4-hydroxybutyric acid were incubated with the P solubilizing bacterial strains Enterobacter cloacae, Pseudomonas pseudoalcaligenes, and Bacillus thuringiensis under either inorganic (calcium phosphate) or organic (phytin) forms of plant-unavailable P. Overall, we found that the addition of individual root exudate compounds did not support bacterial growth rates. However, root exudates supplemented to the different bacterial appeared to enhance P solubilizing activity and overall P availability. Threonine and 4-hydroxybutyric acid induced P solubilization in all three bacterial strains. Subsequent exogenous application of threonine to soils improved the root growth of corn, enhanced nitrogen and P concentrations in roots and increased available levels of potassium, calcium and magnesium in soils. Thus, it appears that threonine might promote the bacterial solubilization and plant-uptake of a variety of nutrients. Altogether, these findings expand on the function of exuded specialized compounds and propose alternative approaches to unlock existing phosphorus reservoirs of P in crop lands.
Collapse
|
9
|
Zhang L, Bai J, Zhang K, Wei Z, Wang Y, Liu H, Xiao R, Jorquera MA. Characterizing bacterial communities in Phragmites australis rhizosphere and non-rhizosphere sediments under pressure of antibiotics in a shallow lake. Front Microbiol 2022; 13:1092854. [PMID: 36560949 PMCID: PMC9763296 DOI: 10.3389/fmicb.2022.1092854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Antibiotics are ubiquitous pollutants and widely found in aquatic ecosystems, which of rhizosphere sediment and rhizosphere bacterial communities had certain correlation. However, the response of bacterial communities in Phragmites australis rhizosphere and non-rhizosphere sediments to antibiotics stress is still poorly understood. Methods To address this knowledge gap, the samples of rhizosphere (R) and non-rhizosphere (NR) sediments of P. australis were collected to investigate the differences of bacterial communities under the influence of antibiotics and key bacterial species and dominate environmental factors in Baiyangdian (BYD) Lake. Results The results showed that the contents of norfloxacin (NOR), ciprofloxacin (CIP) and total antibiotics in rhizosphere sediments were significantly higher than that in non-rhizosphere sediments, meanwhile, bacterial communities in non-rhizosphere sediments had significantly higher diversity (Sobs, Shannon, Simpsoneven and PD) than those in rhizosphere sediments. Furthermore, total antibiotics and CIP were found to be the most important factors in bacterial diversity. The majority of the phyla in rhizosphere sediments were Firmicutes, Proteobacteria and Campilobacterota, while Proteobacteria, Chloroflexi was the most abundant phyla followed by Bacteroidota, Actinobacteriota in non-rhizosphere sediments. The dominate factors of shaping the bacterial communities in rhizosphere were total antibiotics, pH, sediment organic matter (SOM), and NH4-N, while dissolved organic carbon (DOC), NO3-N, pH, and water contents (WC) in non-rhizosphere sediments. Discussion It is suggested that antibiotics may have a substantial effect on bacterial communities in P. australis rhizosphere sediment, which showed potential risk for ARGs selection pressure and dissemination in shallow lake ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing, China,School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, China,*Correspondence: Junhong Bai,
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Zhuoqun Wei
- School of Environment, Beijing Normal University, Beijing, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing, China
| | - Haizhu Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Rong Xiao
- College of Environment and Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
10
|
Pantigoso HA, Newberger D, Vivanco JM. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition. J Appl Microbiol 2022; 133:2864-2876. [PMID: 36648151 PMCID: PMC9796772 DOI: 10.1111/jam.15686] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
While horticulture tools and methods have been extensively developed to improve the management of crops, systems to harness the rhizosphere microbiome to benefit plant crops are still in development. Plants and microbes have been coevolving for several millennia, conferring fitness advantages that expand the plant's own genetic potential. These beneficial associations allow the plants to cope with abiotic stresses such as nutrient deficiency across a wide range of soils and growing conditions. Plants achieve these benefits by selectively recruiting microbes using root exudates, positively impacting their nutrition, health and overall productivity. Advanced knowledge of the interplay between root exudates and microbiome alteration in response to plant nutrient status, and the underlying mechanisms there of, will allow the development of technologies to increase crop yield. This review summarizes current knowledge and perspectives on plant-microbial interactions for resource acquisition and discusses promising advances for manipulating rhizosphere microbiomes and root exudation.
Collapse
Affiliation(s)
- Hugo A. Pantigoso
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| | - Derek Newberger
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| | - Jorge M. Vivanco
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| |
Collapse
|
11
|
Zhang L, Bai J, Wang C, Wei Z, Wang Y, Zhang K, Xiao R, Jorquera MA, Acuña JJ, Campos M. Fate and ecological risks of antibiotics in water-sediment systems with cultivated and wild Phragmites australis in a typical Chinese shallow lake. CHEMOSPHERE 2022; 305:135370. [PMID: 35716710 DOI: 10.1016/j.chemosphere.2022.135370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
River carrying antibiotics from upstream posed serious threats to receiving lake, and plants might had effects on antibiotics. Therefore, samples of waters, sediments and tissues of cultivated and wild Phragmites australis were collected to analyse antibiotics fate and ecological risks (RQs) in Zaozhadian Lake. Our results revealed that the total antibiotics showed an increasing tendency in surface/pore water and P. australis tissues and a decreasing tendency in overlying water and sediments from the lake entrance to the centre. The bioaccumulation factors (BAFs) of two sulfonamides (SAs) and three quinolones (QNs) increased in sediments and decreased in those of erythromycin in pore water from Site 1 to Site 11. Three QNs and two tetracyclines (TCs) were dominant antibiotics in pore water/sediment and surface/overlying water respectively. Higher levels of two SAs in surface/pore water and two macrolides (MAs) in overlying/pore water and sediments were observed in the wild P. australis region, while higher values of two TCs in overlying/pore water and three QNs in sediment were observed in the cultivated P. australis region. Higher BAFs of SAs and QNs in sediments were observed in the cultivated and wild P. australis region respectively. The RQs of oxytetracycline and two MAs posed moderate risks in surface/overlying water from more than 50% of sampling sites. Norfloxacin exhibited moderate RQ and low ∑RQ levels in sediments, and showed high risk in pore water. Our findings imply that much more attention should be given to the antibiotics from river inputs and management normatives to control antibiotic pollution.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810016, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chen Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zhuoqun Wei
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, 071000, China
| | - Rong Xiao
- College of Environment and Resources, FuZhou University, Fuzhou, 350108, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Marco Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
12
|
Su D, Chen S, Zhou W, Yang J, Luo Z, Zhang Z, Tian Y, Dong Q, Shen X, Wei S, Tong J, Cui X. Comparative Analysis of the Microbial Community Structures Between Healthy and Anthracnose-Infected Strawberry Rhizosphere Soils Using Illumina Sequencing Technology in Yunnan Province, Southwest of China. Front Microbiol 2022; 13:881450. [PMID: 35651487 PMCID: PMC9149601 DOI: 10.3389/fmicb.2022.881450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Anthracnose caused by Colletotrichum spp. was widespread in recent years and resulted in great damage to strawberry production. Soil microbial communities were key contributors to host nutrition, development, and immunity; however, the difference between the microbial communities of healthy and anthracnose-infected strawberry rhizosphere soils remains unclear. In this study, the Illumina sequencing technique was used to comparatively study the prokaryotic and fungal community compositions and structures between healthy and anthracnose-infected strawberry rhizosphere soils in Yuxi, Yunnan Province. Both microbial community diversities and richness of anthracnose-infected strawberry rhizosphere soils were higher than those of healthy strawberry rhizosphere soils. A total of 2,518 prokaryotic and 556 fungal operational taxonomic units (OTUs) were obtained at the 97% similarity threshold. Proteobacteria, Thaumarchaeota, and Acidobacteria were the dominant prokaryotic phyla; Ascomycota, unclassified_k__Fungi, and Mortierellomycota were the dominant fungal phyla. The relative abundances of beneficial bacterial phyla Actinobacteria and Firmicutes, genera Streptomyces, Azospirillum, and Bacillus were significantly reduced in anthracnose-infected strawberry rhizosphere soils; the relative abundance of beneficial fungal species Trichoderma asperellum shows a similar tendency with bacterial abundance. Besides Colletotrichum, 15 other potential fungal pathogen genera and seven fungal pathogen species were identified; among the potential pathogen genera and species, eight pathogen genera and Fusarium oxysporum showed significant differences between healthy and anthracnose-infected strawberry rhizosphere soils. The results suggested that strawberry planted in this area may be infected by other fungal pathogens except for Colletotrichum spp. Our present research will provide theoretical basis and data reference for the isolation and identification of strawberry pathogens and potential probiotics in future works.
Collapse
Affiliation(s)
- Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Wenxing Zhou
- Kunming Academy of Agricultural Science, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhiwei Luo
- Kunming Academy of Agricultural Science, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Qionge Dong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Xuemei Shen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shijie Wei
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
13
|
Campolino ML, de Paula Lana UG, Gomes EA, Coelho AM, de Sousa SM. Phosphate fertilization affects rhizosphere microbiome of maize and sorghum genotypes. Braz J Microbiol 2022; 53:1371-1383. [PMID: 35391636 PMCID: PMC9433508 DOI: 10.1007/s42770-022-00747-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the lower reactivity of natural phosphates compared to soluble fertilizers, their P bioavailability can increase over the cultivation years, due to the physicochemical processes and the activity of soil microbiota. Therefore, this work aimed to evaluate the α and β diversity of the rhizosphere microbiota of maize and sorghum genotypes grown under different sources and doses of phosphate fertilizers. Four commercial maize and four sorghum genotypes were grown under field conditions with three levels of triple superphosphate (TSP) and two types of rock phosphate sources: phosphorite (RockP) and bayóvar (RP) during two seasons. Maize and sorghum presented a significant difference on the genetic β diversity of both rhizosferic bacterial and arbuscular mycorrhizal fungi. Moreover, P doses within each phosphate source formed two distinct groups for maize and sorghum, and six bacterial phyla were identified in both crops with significant difference in the relative abundance of Firmicutes and Proteobacteria. It was observed that RockP fertilization increased Firmicutes population while Proteobacteria was the most abundant phylum after TSP fertilization in maize. In sorghum, a significant impact of fertilization was observed on the Acidobacteria and Proteobacteria phyla. TSP fertilization increased the Acidobacteria population compared to no fertilized (P0) and RockP while Proteobacteria abundance in RockP was reduced compared to P0 and TSP, indicating a shift toward a more copiotrophic community. Our results suggested that the reactivity of P source is the predominant factor in bacterial community' structures in the maize and sorghum rhizosphere from the evaluated genotypes, followed by P source.
Collapse
Affiliation(s)
| | | | | | | | - Sylvia Morais de Sousa
- Universidade Federal de São João del Rei, Sete Lagoas, MG, Brazil.
- Embrapa Milho e Sorgo, Sete Lagoas, MG, 35701-970, Brazil.
| |
Collapse
|
14
|
Wang Y, Liu Y, Li X, Han X, Zhang Z, Ma X, Li J. Potentilla anserina L. developmental changes affect the rhizosphere prokaryotic community. Sci Rep 2021; 11:2838. [PMID: 33531629 PMCID: PMC7854623 DOI: 10.1038/s41598-021-82610-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
Plant roots and soil prokaryotes primarily interact with each other in the rhizosphere. Changes in the rhizosphere prokaryotic structure are influenced by several factors. In this study, the community structure of the Potentilla anserina L. rhizosphere prokaryotes was identified and evaluated by high-throughput sequencing technology in different continuous cropping fields and developmental stages of the plant. In total, 2 archaeal (Euryarchaeota and Thaumarchaeota) and 26 bacterial phyla were identified in the P. anserina rhizosphere. The bacterial community was mainly composed of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria, and Verrucomicrobia. Moreover, the prokaryotic community structure of the rhizosphere varied significantly during plant development. Our results provide new insights into the dynamics of the P. anserina rhizosphere prokaryotic community and may provide useful information for enhancing the growth and development of P. anserina through artificial control of the soil prokaryotes.
Collapse
Affiliation(s)
- Yaqiong Wang
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China. .,Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China. .,Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Tibetan Plateau Juema Research Centre, Xining, 810007, China.
| | - Yuxi Liu
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Xue Li
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Xiaoyan Han
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Zhen Zhang
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Xiaoling Ma
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China
| | - Junqiao Li
- School of Ecology, Environment and Resources, Qinghai Nationalities University, Bayi Road, Xining, 810007, Qinghai, China. .,Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China. .,Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Tibetan Plateau Juema Research Centre, Xining, 810007, China.
| |
Collapse
|