1
|
Kwak Y, Argandona JA, Miao S, Son TJ, Hansen AK. A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation. mBio 2025; 16:e0358824. [PMID: 39998220 PMCID: PMC11980576 DOI: 10.1128/mbio.03588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Some facultative bacterial symbionts are known to benefit insects, but nutritional advantages are rare among these non-obligate symbionts. Here, we demonstrate that the facultative symbiont Candidatus Liberibacter psyllaurous enhances the fitness of its psyllid insect host, Bactericera cockerelli, by providing nutritional benefits. L. psyllaurous, an unculturable pathogen of solanaceous crops, also establishes a close relationship with its insect vector, B. cockerelli, increasing in titer during insect development, vertically transmitting through eggs, and colonizing various tissues, including the bacteriome, which houses the obligate nutritional symbiont, Carsonella. Carsonella supplies essential amino acids to its insect host but has gaps in some of its essential amino acid pathways that the psyllid complements with its own genes, many of which have been acquired through horizontal gene transfer (HGT) from bacteria. Our findings reveal that L. psyllaurous increases psyllid fitness on plants by reducing developmental time and increasing adult weight. In addition, through metagenomic sequencing, we reveal that L. psyllaurous maintains complete pathways for synthesizing the essential amino acids arginine, lysine, and threonine, unlike the psyllid's other resident microbiota, Carsonella, and two co-occurring Wolbachia strains. RNA sequencing reveals the downregulation of a HGT collaborative psyllid gene (ASL), which indicates a reduced demand for arginine supplied by Carsonella when the psyllid is infected with L. psyllaurous. Notably, artificial diet assays show that L. psyllaurous enhances psyllid fitness on an arginine-deplete diet. These results corroborate the role of L. psyllaurous as a beneficial insect symbiont, contributing to the nutrition of its insect host.IMPORTANCEUnlike obligate symbionts that are permanently associated with their hosts, facultative symbionts rarely show direct nutritional contributions, especially under nutrient-limited conditions. This study demonstrates, for the first time, that Candidatus Liberibacter psyllaurous, a facultative symbiont and a plant pathogen, enhances the fitness of its Bactericera cockerelli host by supplying an essential nutrient arginine that is lacking in the plant sap diet. Our findings reveal how facultative symbionts can play a vital role in helping their insect hosts adapt to nutrient-limited environments. This work provides new insights into the dynamic interactions between insect hosts, their symbiotic microbes, and their shared ecological niches, broadening our understanding of symbiosis and its role in shaping adaptation and survival.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Jacob A. Argandona
- Department of Entomology, University of California, Riverside, California, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, California, USA
| | - Thomas J. Son
- Department of Entomology, University of California, Riverside, California, USA
| | - Allison K. Hansen
- Department of Entomology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Pramatarova M, Malenovský I, Gjonov I. Jumping plant lice (Hemiptera, Psylloidea) of Bulgaria - an annotated checklist. Biodivers Data J 2025; 13:e147277. [PMID: 40170994 PMCID: PMC11959290 DOI: 10.3897/bdj.13.e147277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025] Open
Abstract
Background Knowledge of the fauna of jumping plant lice or psyllids in Bulgaria is rather scattered. So far, 113 species of psyllids have been recorded from Bulgaria in 51 publications. The aim of this study is to provide an up-to-date checklist of the Psylloidea species from Bulgaria, based on extensive fieldwork by the authors and examination of specimens mainly from the Zoological Collection of Sofia University (BFUS) and the Moravian Museum in Brno (MMBC). In addition, a thorough review of all relevant literature was undertaken to consolidate the existing records. New information Twenty-five species of jumping plant lice are recorded here from Bulgaria for the first time. Of these, two species represent new records for Europe: Dyspersakantshavelii (Gegechkori, 1977) and Heterotriozakochiae (Gegechkori, 1975); and three additional species represent new records for the Balkan Peninsula: Arytainillaspartiicola (Šulc, 1912), Craspedoleptaaraneosa Loginova, 1962 and Eryngiofagababugani (Loginova, 1964). A new synonymy is proposed: Colposceniaosmanica Vondráček, 1953 = Colposceniakiritshenkoi Loginova, 1960, syn. nov. A lectotype is designated for C.osmanica to stabilise the nomenclature. Original drawings or photographs of diagnostic characters on male and female terminalia are provided for C.osmanica, D.kantshavelii, Heterotriozaeurotiae (Loginova, 1960) and H.kochiae. Distributional maps summarising all known records from Bulgaria are provided for each species. Where available, photographs of live or mounted specimens and information on host plants are also provided, including new host plant records for 10 species. The previously published records of Aphalarasauteri Burckhardt, 1983, Bactericeraacutipennis (Zetterstedt, 1828), B.reuteri (Šulc, 1913), Dyspersaapicalis (Foerster, 1848), D.viridula (Zetterstedt, 1828), Eryngiofagamesomela (Flor, 1861) and Triozadispar Löw, 1878 from Bulgaria are considered doubtful and these species are deleted from the list of the Bulgarian fauna, which now comprises 130 species from 33 genera and six families of jumping plant lice. This diversity is compared with the known data on Psylloidea in other countries of the Balkan Peninsula and Turkey and the Bulgarian psyllid fauna is discussed from the perspective of biogeography.
Collapse
Affiliation(s)
- Monika Pramatarova
- Sofia University, Faculty of Biology, Sofia, BulgariaSofia University, Faculty of BiologySofiaBulgaria
- National Museum of Natural History - Bulgarian Academy of Sciences, Sofia, BulgariaNational Museum of Natural History - Bulgarian Academy of SciencesSofiaBulgaria
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech RepublicDepartment of Botany and Zoology, Faculty of Science, Masaryk UniversityBrnoCzech Republic
- Department of Entomology, Moravian Museum, Brno, Czech RepublicDepartment of Entomology, Moravian MuseumBrnoCzech Republic
| | - Ilia Gjonov
- Sofia University, Faculty of Biology, Sofia, BulgariaSofia University, Faculty of BiologySofiaBulgaria
| |
Collapse
|
3
|
Izu T, Uchida N, Takasu R, Nakabachi A. Antibacterial spectrum of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid. J Invertebr Pathol 2025; 211:108309. [PMID: 40086789 DOI: 10.1016/j.jip.2025.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Diaphorin is a polyketide synthesized by "Candidatus Profftella armatura" (Betaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Previous studies showed that physiological concentrations of diaphorin, which is present in D. citri at 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). However, bacteria examined for diaphorin activity were limited to these two model species, and little was known about the activity spectrum of diaphorin, which is essential for understanding its effects on the D. citri microbiota. As a first step to address this issue, this study investigated the effects of diaphorin on six bacterial species: Arsenophonus nasoniae, Photorhabdus luminescens, Serratia entomophila, Serratia symbiotica (all Gammaproteobacteria: Enterobacterales), and Micrococcus luteus and Kocuria rhizophila (both Actinobacteria: Micrococcales). The results revealed that five milimolar diaphorin promotes the growth of M. luteus but inhibits the growth of other bacterial species, showing that the spectrum of diaphorin is complex and not simply determined by the taxonomic group or the cell envelope composition of the target bacteria. To further assess whether differences in the susceptibility to diaphorin affect the suitability as a potential biopesticide, we analyzed the mortality of D. citri after treatment with these bacteria. This revealed that only S. entomophila significantly increases D. citri mortality, implying that when diaphorin is not inhibitory enough on bacteria, the innate bacterial growth speed and susceptibility to the D. citri immune system have a more significant impact on controlling D. citri.
Collapse
Affiliation(s)
- Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Naohiro Uchida
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan; Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan.
| |
Collapse
|
4
|
Takasu R, Izu T, Nakabachi A. A limited concentration range of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, promotes the in vitro gene expression with bacterial ribosomes. Microbiol Spectr 2024; 12:e0017024. [PMID: 38832800 PMCID: PMC11218438 DOI: 10.1128/spectrum.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Physiological concentrations of diaphorin, which D. citri contains at levels as high as 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). Our previous study demonstrated that 5-mM diaphorin, which exhibits significant inhibitory and promoting effects on cultured B. subtilis and E. coli, respectively, inhibits in vitro gene expression utilizing purified B. subtilis and E. coli ribosomes. This suggested that the adverse effects of diaphorin on B. subtilis are partly due to its influence on gene expression. However, the result appeared inconsistent with the positive impact on E. coli. Moreover, the diaphorin concentration in bacterial cells, where genes are expressed in vivo, may be lower than in culture media. Therefore, the present study analyzed the effects of 50 and 500 µM of diaphorin on bacterial gene expression using the same analytical method. The result revealed that this concentration range of diaphorin, in contrast to 5-mM diaphorin, promotes the in vitro translation with the B. subtilis and E. coli ribosomes, suggesting that the positive effects of diaphorin on E. coli are due to its direct effects on translation. This study demonstrated for the first time that a pederin-type compound promotes gene expression, establishing a basis for utilizing its potential in pest management and industrial applications.IMPORTANCEThis study revealed that a limited concentration range of diaphorin, a secondary metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free gene expression utilizing substrates and proteins purified from bacteria. The unique property of diaphorin, which is inhibitory to various eukaryotes and Bacillus subtilis but promotes the growth and metabolic activity of Escherichia coli, may affect the microbial flora of the pest insect, potentially influencing the transmission of devastating plant pathogens. Moreover, the activity may be exploited to improve the efficacy of industrial production by E. coli, which is often used to produce various important materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study elucidated a part of the mechanism by which the unique activity of diaphorin is expressed, constructing a foundation for applying the distinct property to pest management and industrial use.
Collapse
Affiliation(s)
- Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
5
|
Duan XZ, Guo GS, Zhou LF, Li L, Liu ZM, Chen C, Wang BH, Wu L. Enterobacteriaceae as a Key Indicator of Huanglongbing Infection in Diaphorina citri. Int J Mol Sci 2024; 25:5136. [PMID: 38791176 PMCID: PMC11120679 DOI: 10.3390/ijms25105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Extensive microbial interactions occur within insect hosts. However, the interactions between the Huanglongbing (HLB) pathogen and endosymbiotic bacteria within the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) in wild populations remain elusive. Thus, this study aimed to detect the infection rates of HLB in the ACP across five localities in China, with a widespread prevalence in Ruijin (RJ, 58%), Huidong (HD, 28%), and Lingui (LG, 15%) populations. Next, microbial communities of RJ and LG populations collected from citrus were analyzed via 16S rRNA amplicon sequencing. The results revealed a markedly higher microbial diversity in the RJ population compared to the LG population. Moreover, the PCoA analysis identified significant differences in microbial communities between the two populations. Considering that the inter-population differences of Bray-Curtis dissimilarity in the RJ population exceeded those between populations, separate analyses were performed. Our findings indicated an increased abundance of Enterobacteriaceae in individuals infected with HLB in both populations. Random forest analysis also identified Enterobacteriaceae as a crucial indicator of HLB infection. Furthermore, the phylogenetic analysis suggested a potential regulatory role of ASV4017 in Enterobacteriaceae for ACP, suggesting its possible attractant activity. This research contributes to expanding the understanding of microbial communities associated with HLB infection, holding significant implications for HLB prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lan Wu
- School of Life Science, Nanchang University, Nanchang 330022, China
| |
Collapse
|
6
|
Mauck KE, Gebiola M, Percy DM. The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:277-302. [PMID: 37738463 DOI: 10.1146/annurev-ento-120120-114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Marco Gebiola
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
7
|
Nakabachi A, Suzaki T. Ultrastructure of the bacteriome and bacterial symbionts in the Asian citrus psyllid, Diaphorina citri. Microbiol Spectr 2024; 12:e0224923. [PMID: 38047691 PMCID: PMC10783097 DOI: 10.1128/spectrum.02249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Omics analyses suggested a mutually indispensable tripartite association among the host D. citri and organelle-like bacteriome associates, Carsonella and Profftella, which are vertically transmitted through host generations. This relationship is based on the metabolic complementarity among these organisms, which is partly enabled by horizontal gene transfer between partners. However, little was known about the fine morphology of the symbionts and the bacteriome, the interface among these organisms. As a first step to address this issue, the present study performed transmission electron microscopy, which revealed previously unrecognized ultrastructures, including aggregations of ribosomes in Carsonella, numerous tubes and occasional protrusions of Profftella, apparently degrading Profftella, and host organelles with different abundance and morphology in distinct cell types. These findings provide insights into the behaviors of the symbionts and host cells to maintain the symbiotic relationship in D. citri.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
8
|
Yasuda Y, Inoue H, Hirose Y, Nakabachi A. Highly Reduced Complementary Genomes of Dual Bacterial Symbionts in the Mulberry Psyllid Anomoneura mori. Microbes Environ 2024; 39:n/a. [PMID: 39245568 PMCID: PMC11427311 DOI: 10.1264/jsme2.me24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The genomes of obligately host-restricted bacteria suffer from accumulating mildly deleterious mutations, resulting in marked size reductions. Psyllids (Hemiptera) are phloem sap-sucking insects with a specialized organ called the bacteriome, which typically harbors two vertically transmitted bacterial symbionts: the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria) and a secondary symbiont that is phylogenetically diverse among psyllid lineages. The genomes of several Carsonella lineages were revealed to be markedly reduced (158-174 kb), AT-rich (14.0-17.9% GC), and structurally conserved with similar gene inventories devoted to synthesizing essential amino acids that are scarce in the phloem sap. However, limited genomic information is currently available on secondary symbionts. Therefore, the present study investigated the genomes of the bacteriome-associated dual symbionts, Secondary_AM (Gammaproteobacteria) and Carsonella_AM, in the mulberry psyllid Anomoneura mori (Psyllidae). The results obtained revealed that the Secondary_AM genome is as small and AT-rich (229,822 bp, 17.3% GC) as those of Carsonella lineages, including Carsonella_AM (169,120 bp, 16.2% GC), implying that Secondary_AM is an evolutionarily ancient obligate mutualist, as is Carsonella. Phylogenomic ana-lyses showed that Secondary_AM is sister to "Candidatus Psyllophila symbiotica" of Cacopsylla spp. (Psyllidae), the genomes of which were recently reported (221-237 kb, 17.3-18.6% GC). The Secondary_AM and Psyllophila genomes showed highly conserved synteny, sharing all genes for complementing the incomplete tryptophan biosynthetic pathway of Carsonella and those for synthesizing B vitamins. However, sulfur assimilation and carotenoid-synthesizing genes were only retained in Secondary_AM and Psyllophila, respectively, indicating ongoing gene silencing. Average nucleotide identity, gene ortholog similarity, genome-wide synteny, and substitution rates suggest that the Secondary_AM/Psyllophila genomes are more labile than Carsonella genomes.
Collapse
Affiliation(s)
- Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology
| |
Collapse
|
9
|
Takasu R, Yasuda Y, Izu T, Nakabachi A. Diaphorin, a polyketide produced by a bacterial endosymbiont of the Asian citrus psyllid, adversely affects the in vitro gene expression with ribosomes from Escherichia coli and Bacillus subtilis. PLoS One 2023; 18:e0294360. [PMID: 37963163 PMCID: PMC10645341 DOI: 10.1371/journal.pone.0294360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria), an obligate mutualist of an important agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera). Our previous study demonstrated that diaphorin, at physiological concentrations in D. citri, inhibits the growth and cell division of Bacillus subtilis (Firmicutes) but promotes the growth and metabolic activity of Escherichia coli (Gammaproteobacteria). This unique property of diaphorin may aid microbial mutualism in D. citri, potentially affecting the transmission of "Candidatus Liberibacter spp." (Alphaproteobacteria), the pathogens of the most destructive citrus disease Huanglongbing. Moreover, this property may be exploited to promote microbes' efficiency in producing industrial materials. However, the mechanism underlying this activity is unknown. Diaphorin belongs to the family of pederin-type compounds, which inhibit protein synthesis in eukaryotes by binding to eukaryotic ribosomes. Therefore, as a first step to assess diaphorin's direct influence on bacterial gene expression, this study examined the effect of diaphorin on the in vitro translation using ribosomes of B. subtilis and E. coli, quantifying the production of the green fluorescent protein. The results showed that the gene expression involving B. subtilis and E. coli ribosomes along with five millimolar diaphorin was 29.6% and 13.1%, respectively, less active than the control. This suggests that the diaphorin's adverse effects on B. subtilis are attributed to, at least partly, its inhibitory effects on gene expression. Moreover, as ingredients of the translation system were common other than ribosomes, the greater inhibitory effects observed with the B. subtilis ribosome imply that the ribosome is among the potential targets of diaphorin. On the other hand, the results also imply that diaphorin's positive effects on E. coli are due to targets other than the core machinery of transcription and translation. This study demonstrated for the first time that a pederin congener affects bacterial gene expression.
Collapse
Affiliation(s)
- Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
10
|
Henry E, Carlson CR, Kuo YW. Candidatus Kirkpatrickella diaphorinae gen. nov., sp. nov., an uncultured endosymbiont identified in a population of Diaphorina citri from Hawaii. Int J Syst Evol Microbiol 2023; 73. [PMID: 37930120 DOI: 10.1099/ijsem.0.006111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Diaphorina citri is the hemipteran pest and vector of a devastating bacterial pathogen of citrus worldwide. In addition to the two core bacterial endosymbionts of D. citri, Candidatus Carsonella ruddii and Candidatus Profftella armatura, the genome of a novel endosymbiont and as of yet undescribed microbe was discovered in a Hawaiian D. citri population through deep sequencing of multiple D. citri populations. Found to be closely related to the genus Asaia in the family Acetobacteraceae by 16S rRNA gene sequence analysis, it forms a sister clade along with other insect-associated 16S rRNA gene sequences from uncultured bacterium found associated with Aedes koreicus and Sogatella furcifera. Multilocus sequence analysis confirmed the phylogenetic placement sister to the Asaia clade. Despite the culturable Asaia clade being the closest phylogenetic neighbour, attempts to culture this newly identified bacterial endosymbiont were unsuccessful. On the basis of these distinct genetic differences, the novel endosymbiont is proposed to be classified into a candidate genus and species 'Candidatus Kirkpatrickella diaphorinae'. The full genome was deposited in GenBank (accession number CP107052; prokaryotic 16S rRNA OP600170).
Collapse
Affiliation(s)
- Elizabeth Henry
- Department of Plant Pathology, University of California Davis, Davis, California 95616, USA
| | - Curtis R Carlson
- Department of Plant Pathology, University of California Davis, Davis, California 95616, USA
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
11
|
Štarhová Serbina L, Corretto E, Enciso Garcia JS, Berta M, Giovanelli T, Dittmer J, Schuler H. Seasonal wild dance of dual endosymbionts in the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea). Sci Rep 2023; 13:16038. [PMID: 37749181 PMCID: PMC10519999 DOI: 10.1038/s41598-023-43130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy.
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 60200, Brno, Czech Republic.
| | - Erika Corretto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Juan Sebastian Enciso Garcia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Michela Berta
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Tobia Giovanelli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Jessica Dittmer
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d'Angers, Angers, France
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| |
Collapse
|
12
|
Fang ZQ, Liao YC, Lee S, Yang MM, Chu CC. Infection patterns of 'Candidatus Liberibacter europaeus' in Cacopsylla oluanpiensis, a psyllid pest of Pittosporum pentandrum. J Invertebr Pathol 2023; 200:107959. [PMID: 37392992 DOI: 10.1016/j.jip.2023.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
'Candidatus Liberibacter' is a genus of plant-associated bacteria that can be transmitted by insects of the superfamily Psylloidea. Since many members of this genus are putative causal agents of plant diseases, it is crucial in studying their interactions with the psyllid vectors. However, previous studies have mainly focused on few species associated with diseases of economic significance, and this may potentially hinder the development of a more comprehensive understanding of the ecology of 'Ca. Liberibacter'. The present study showed that an endemic psyllid species in Taiwan, Cacopsylla oluanpiensis, is infected with a species of 'Ca. Liberibacter'. The bacterium was present in geographically distant populations of the psyllid and was identified as 'Ca. Liberibacter europaeus' (CLeu), a species which generally does not induce plant symptoms. Analysis of CLeu infection densities in male and female C. oluanpiensis with different abdominal colors using quantitative polymerase chain reaction revealed that CLeu infection was not significantly associated with psyllid gender and body color. Instead, CLeu infection had a negative effect on the body sizes of both male and female psyllids, which is influenced by bacterial titer. Investigation on CLeu's distribution patterns in C. oluanpiensis's host plant Pittosporum pentandrum indicated that CLeu does not behave as a plant pathogen. Also, results showed that nymph-infested twigs had a greater chance of carrying high loads of CLeu, suggesting that ovipositing females and the nymphs are the main source of the bacterium in the plants. This study is not only the first to formally report the presence of CLeu in C. oluanpiensis and plants in the family Pittosporaceae, but also represents the first record of the bacterium in Taiwan. Overall, the findings in this work broaden the understanding of associations between psyllids and 'Ca. Liberibacter' in the field.
Collapse
Affiliation(s)
- Zi-Qing Fang
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan
| | - Yi-Chang Liao
- Department of Entomology, University of California, 165 Entomology Building, Citrus Drive, Riverside, CA, USA
| | - Shin Lee
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan
| | - Man-Miao Yang
- Department of Entomology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan.
| | - Chia-Ching Chu
- Department of Plant Pathology, National Chung Hsing University, 145 Xinda Rd., Taichung, Taiwan.
| |
Collapse
|
13
|
Dai J, Cai X, Liu L, Lin Y, Huang Y, Lin J, Shu B. The comparison of gut gene expression and bacterial community in Diaphorina citri (Hemiptera: Liviidae) adults fed on Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju). BMC Genomics 2023; 24:416. [PMID: 37488494 PMCID: PMC10364414 DOI: 10.1186/s12864-023-09308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Diaphorina citri Kuwayama is an important citrus pest. It serves as the vector for the transmission of Candidatus Liberibacter asiaticus (CLas), which induced a destructive disease, Huanglongbing, and caused huge economic losses. During the interaction between insects and plants, insects have evolved a series of mechanisms to adapt to various host plants. Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju) are the Rutaceae species from different genera that have been discovered as suitable hosts for D. citri adults. While the adaptation mechanism of this pest to these two host plants is unclear. RESULTS In this study, RNA-seq and 16 S rDNA amplification sequencing were performed on the gut of D. citri adults reared on M. exotica and 'Shatangju' mandarin. RNA-seq results showed that a total of 964 differentially expressed genes were found in different gut groups with two host plant treatments. The impacted genes include those that encode ribosomal proteins, cathepsins, and mitochondrial respiratory chain complexes. According to 16 S rDNA sequencing, the compositions of the gut bacterial communities were altered by different treatments. The α and β diversity analyses confirmed that the host plant changes influenced the gut microbial diversity. The functional classification analysis by Tax4Fun revealed that 27 KEGG pathways, mostly those related to metabolism, including those for nucleotide metabolism, energy metabolism, metabolism of cofactors and vitamins, amino acid metabolism, carbohydrate metabolism, xenbiotics biodegradation and metabolism, lipid metabolism, and biosynthesis of other secondary metabolites, were significantly altered. CONCLUSION Our preliminary findings shed light on the connection between D. citri and host plants by showing that host plants alter the gene expression profiles and bacterial community composition of D. citri adults.
Collapse
Affiliation(s)
- Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong Teaching Building, Guangzhou, 510225, China.
| |
Collapse
|
14
|
Maruyama J, Inoue H, Hirose Y, Nakabachi A. 16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium. Microbes Environ 2023; 38:ME23045. [PMID: 37612118 PMCID: PMC10522848 DOI: 10.1264/jsme2.me23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.
Collapse
Affiliation(s)
- Junnosuke Maruyama
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
- Research Institute for Technological Science and Innovation, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
15
|
Štarhová Serbina L, Gajski D, Pafčo B, Zurek L, Malenovský I, Nováková E, Schuler H, Dittmer J. Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environ Microbiol 2022; 24:5788-5808. [PMID: 36054322 PMCID: PMC10086859 DOI: 10.1111/1462-2920.16180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/20/2022] [Indexed: 01/12/2023]
Abstract
Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Domagoj Gajski
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludek Zurek
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Jessica Dittmer
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Université d'Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Angers, France
| |
Collapse
|
16
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
17
|
Ashraf HJ, Ramos Aguila LC, Akutse KS, Ilyas M, Abbasi A, Li X, Wang L. Comparative microbiome analysis of Diaphorina citri and its associated parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis reveals Wolbachia as a dominant endosymbiont. Environ Microbiol 2022; 24:1638-1652. [PMID: 35229443 DOI: 10.1111/1462-2920.15948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Microbiome analysis in a host-parasitoid interaction network was conducted to compare the taxonomic composition of bacterial communities of Diaphornia citri, Tamarixia radiata, and Diaphorencyrtus aligarhensis. The comparative analysis revealed differences in the composition and diversity of the symbiont populations across the host and its associated parasitoids. Proteobacteria was the most dominant phylum, representing 67.80% of the total bacterial community, while Candidatus Profftella armature and Wolbachia were the dominant genera across the host and parasitoids. There were clear differences observed in alpha and beta diversity of microbiota through the host and its associated parasitoids. The function prediction of bacterial communities and Pearson correlation analysis showed that specific bacterial communities displayed positive correlations with the carbohydrate metabolism pathway. Furthermore, when symbiotic bacteria were eliminated using a broad-spectrum antibiotic, tetracycline hydrochloride, the parasitoids' median survival time and longevity were significantly reduced. We confirmed the physiological effects of symbiotic bacteria on the fitness of parasitoids and demonstrated the effect of antibiotics in decreasing the food intake and measurement of amino acids in the hemolymph. This study sheds light on basic information about the mutualism between parasitoids and bacteria, which may be a potential source for biocontrol strategies for citrus psyllid, especially D. citri. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Muhammad Ilyas
- Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao, 266071, China
| | - Asim Abbasi
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
18
|
Nakabachi A, Inoue H, Hirose Y. Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiol 2022; 22:15. [PMID: 34996376 PMCID: PMC8740488 DOI: 10.1186/s12866-021-02429-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02429-2.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan. .,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
19
|
Nakabachi A, Inoue H, Hirose Y. High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O. Microbes Environ 2022; 37:ME22078. [PMID: 36476840 PMCID: PMC9763047 DOI: 10.1264/jsme2.me22078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution ana-lyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen "Ca. Liberibacter europaeus" (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan, Corresponding author. E-mail: ; Tel: +81–532–44–6901
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
20
|
Kwak Y, Sun P, Meduri VR, Percy DM, Mauck KE, Hansen AK. Uncovering Symbionts Across the Psyllid Tree of Life and the Discovery of a New Liberibacter Species, " Candidatus" Liberibacter capsica. Front Microbiol 2021; 12:739763. [PMID: 34659173 PMCID: PMC8511784 DOI: 10.3389/fmicb.2021.739763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Sap-feeding insects in the order Hemiptera associate with obligate endosymbionts that are required for survival and facultative endosymbionts that can potentially modify resistance to stress, enemies, development, and reproduction. In the superfamily Psylloidea, the jumping plant lice (psyllids), less is known about the diversity and prevalence of their endosymbionts compared to other sap-feeding pests such as aphids (Aphididae). To address this knowledge gap, using 16S rRNA sequencing we identify symbionts across divergent psyllid host lineages from around the world. Taking advantage of a new comprehensive phylogenomic analyses of Psylloidea, we included psyllid samples from 44 species of 35 genera of five families, collected from 11 international locations for this study. Across psyllid lineages, a total of 91 OTUs were recovered, predominantly of the Enterobacteriaceae (68%). The diversity of endosymbionts harbored by each psyllid species was low with an average of approximately 3 OTUs. Two clades of endosymbionts (clade 1 and 2), belonging to Enterobacteriaceae, were identified that appear to be long term endosymbionts of the psyllid families Triozidae and Psyllidae, respectively. We also conducted high throughput metagenomic sequencing on three Ca. Liberibacter infected psyllid species (Russelliana capsici, Trichochermes walkeri, and Macrohomotoma gladiata), initially identified from 16S rRNA sequencing, to obtain more genomic information on these putative Liberibacter plant pathogens. The phylogenomic analyses from these data identified a new Ca. Liberibacter species, Candidatus Liberibacter capsica, that is a potential pathogen of solanaceous crops. This new species shares a distant ancestor with Ca. L. americanus, which occurs in the same range as R. capsici in South America. We also detected the first association between a psyllid specializing on woody hosts and the Liberibacter species Ca. L. psyllaurous, which is a globally distributed pathogen of herbaceous crop hosts in the Solanaceae. Finally, we detected a potential association between a psyllid pest of figs (M. gladiata) and a Ca. Liberibacter related to Ca. L. asiaticus, which causes severe disease in citrus. Our findings reveal a wider diversity of associations between facultative symbionts and psyllids than previously reported and suggest numerous avenues for future work to clarify novel associations of ecological, evolutionary, and pathogenic interest.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | | | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
21
|
Nakabachi A, Piel J, Malenovský I, Hirose Y. Comparative Genomics Underlines Multiple Roles of Profftella, an Obligate Symbiont of Psyllids: Providing Toxins, Vitamins, and Carotenoids. Genome Biol Evol 2021; 12:1975-1987. [PMID: 32797185 PMCID: PMC7643613 DOI: 10.1093/gbe/evaa175] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri (Insecta: Hemiptera: Psylloidea), a serious pest of citrus species worldwide, harbors vertically transmitted intracellular mutualists, Candidatus Profftella armatura (Profftella_DC, Gammaproteobacteria: Burkholderiales) and Candidatus Carsonella ruddii (Carsonella_DC, Gammaproteobacteria: Oceanospirillales). Whereas Carsonella_DC is a typical nutritional symbiont, Profftella_DC is a unique defensive symbiont with organelle-like features, including intracellular localization within the host, perfect infection in host populations, vertical transmission over evolutionary time, and drastic genome reduction down to much less than 1 Mb. Large parts of the 460-kb genome of Profftella_DC are devoted to genes for synthesizing a polyketide toxin; diaphorin. To better understand the evolution of this unusual symbiont, the present study analyzed the genome of Profftella_Dco, a sister lineage to Profftella_DC, using Diaphorina cf. continua, a host psyllid congeneric with D. citri. The genome of coresiding Carsonella (Carsonella_Dco) was also analyzed. The analysis revealed nearly perfect synteny conservation in these genomes with their counterparts from D. citri. The substitution rate analysis further demonstrated genomic stability of Profftella which is comparable to that of Carsonella. Profftella_Dco and Profftella_DC shared all genes for the biosynthesis of diaphorin, hemolysin, riboflavin, biotin, and carotenoids, underlining multiple roles of Profftella, which may contribute to stabilizing symbiotic relationships with the host. However, acyl carrier proteins were extensively amplified in polyketide synthases DipP and DipT for diaphorin synthesis in Profftella_Dco. This level of acyl carrier protein augmentation, unprecedented in modular polyketide synthases of any known organism, is not thought to influence the polyketide structure but may improve the synthesis efficiency.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Japan.,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, Japan
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, Japan
| |
Collapse
|
22
|
Wheeler TB, Thompson V, Conner WR, Cooper BS. Wolbachia in the spittlebug Prosapia ignipectus: Variable infection frequencies, but no apparent effect on host reproductive isolation. Ecol Evol 2021; 11:10054-10065. [PMID: 34367558 PMCID: PMC8328426 DOI: 10.1002/ece3.7782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Animals serve as hosts for complex communities of microorganisms, including endosymbionts that live inside their cells. Wolbachia bacteria are perhaps the most common endosymbionts, manipulating host reproduction to propagate. Many Wolbachia cause cytoplasmic incompatibility (CI), which results in reduced egg hatch when uninfected females mate with infected males. Wolbachia that cause intense CI spread to high and relatively stable frequencies, while strains that cause weak or no CI tend to persist at intermediate, often variable, frequencies. Wolbachia could also contribute to host reproductive isolation (RI), although current support for such contributions is limited to a few systems. To test for Wolbachia frequency variation and effects on host RI, we sampled several local Prosapia ignipectus (Fitch) (Hemiptera: Cercopidae) spittlebug populations in the northeastern United States over two years, including closely juxtaposed Maine populations with different monomorphic color forms, "black" and "lined." We discovered a group-B Wolbachia (wPig) infecting P. ignipectus that diverged from group-A Wolbachia-like model wMel and wRi strains in Drosophila-6 to 46 MYA. Populations of the sister species Prosapia bicincta (Say) from Hawaii and Florida are uninfected, suggesting that P. ignipectus acquired wPig after their initial divergence. wPig frequencies were generally high and variable among sites and between years. While phenotyping wPig effects on host reproduction is not currently feasible, the wPig genome contains three divergent sets of CI loci, consistent with high wPig frequencies. Finally, Maine monomorphic black and monomorphic lined populations of P. ignipectus share both wPig and mtDNA haplotypes, implying no apparent effect of wPig on the maintenance of this morphological contact zone. We hypothesize P. ignipectus acquired wPig horizontally as observed for many Drosophila species, and that significant CI and variable transmission produce high but variable wPig frequencies.
Collapse
Affiliation(s)
| | - Vinton Thompson
- Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | | | | |
Collapse
|
23
|
Thairu MW, Meduri VRS, Degnan PH, Hansen AK. Natural selection shapes maintenance of orthologous sRNAs in divergent host-restricted bacterial genomes. Mol Biol Evol 2021; 38:4778-4791. [PMID: 34213555 PMCID: PMC8557413 DOI: 10.1093/molbev/msab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA.,Department of Bacteriology, University of Wisconsin, Madison, Madison, WI
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA
| |
Collapse
|
24
|
Yang C, Ou D, Guo W, Lü J, Guo C, Qiu B, Pan H. De Novo Assembly of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Psyllidae) Transcriptome across Developmental Stages. Int J Mol Sci 2020; 21:ijms21144974. [PMID: 32674498 PMCID: PMC7404022 DOI: 10.3390/ijms21144974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Asian citrus psyllid Diaphorina citri Kuwayama is an important economic pest of citrus, as it transmits Candidatus Liberibacter asiaticus, the causative agent of huanglongbing. In this study, we used RNA-seq to identify novel genes and provide the first high-resolution view of the of D. citri transcriptome throughout development. The transcriptomes of D. citri during eight developmental stages, including the egg, five instars, and male and female adults were sequenced. In total, 115 million clean reads were obtained and assembled into 354,726 unigenes with an average length of 925.65 bp and an N50 length of 1733 bp. Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to functionally annotate the genes. Differential expression analysis highlighted developmental stage-specific expression patterns. Furthermore, two trehalase genes were characterized with lower expression in adults compared to that in the other stages. The RNA interference (RNAi)-mediated suppression of the two trehalase genes resulted in significantly high D. citri mortality. This study enriched the genomic information regarding D. citri. Importantly, these data represent the most comprehensive transcriptomic resource currently available for D. citri and will facilitate functional genomics studies of this notorious pest.
Collapse
Affiliation(s)
- Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Changfei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- Correspondence: (B.Q.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- Correspondence: (B.Q.); (H.P.)
| |
Collapse
|