1
|
Karapareddy S, Anche VC, Tamatamu SR, Janga MR, Lawrence K, Nyochembeng LM, Todd A, Walker LT, Sripathi VR. Profiling of rhizosphere-associated microbial communities in North Alabama soils infested with varied levels of reniform nematodes. FRONTIERS IN PLANT SCIENCE 2025; 16:1521579. [PMID: 40123958 PMCID: PMC11925883 DOI: 10.3389/fpls.2025.1521579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
Introduction Plant roots, nematodes, and soil microorganisms have a complex interaction in the rhizosphere by exchanging or communicating through biomolecules or chemicals or signals. Some rhizospheric (including endophytic) microbes process such compounds via biogeochemical cycles to improve soil fertility, promote plant growth and development, and impart stress tolerance in plants. Some rhizospheric microbes can affect negatively on plant parasitic nematodes (PPNs) thus hindering the ability of nematodes in parasitizing the plant roots. Next-generation sequencing is one of the most widely used and cost-effective ways of determining the composition and diversity of microbiomes in such complex environmental samples. Methods This study employed amplicon sequencing (Illumina/NextSeq) of 16S ribosomal RNA (16S rRNA) for bacteria and Internal Transcribed Spacer (ITS2) region for fungi to profile the soil microbiome in the rhizosphere of cotton grown in North Alabama. We isolated DNA (ZymoBIOMICS) from soil samples in triplicates from four representative locations of North Alabama. Based on the level of Reniform Nematode (RN) Infestation, these locations were classified as Group A-RN Not-Detected (ND), Group B-RN Low Infestation (LI), Group C-RN Medium Infestation (MI), and Group D-RN High Infestation (HI) and determined using sieving method and microscopic examination. Results and discussion Our analyses identified 47,893 bacterial and 3,409 fungal Amplicon Sequence Variants (ASVs) across all groups. Among the bacterial ASVs, 12,758, 10,709, 12,153, and 11,360 unique ASVs were determined in Groups A, B, C, and D, respectively. While 663, 887, 480, and 326 unique fungal ASVs were identified in Groups A, B, C, and D, respectively. Also, the five most abundant rhizospheric bacterial genera identified were Gaiella, Conexibacter, Bacillus, Blastococcus, Streptomyces. Moreover, five abundant fungal genera belonging to Fusarium, Aspergillus, Gibberella, Cladosporium, Lactera were identified. The tight clustering of bacterial nodes in Actinobacteria, Acidobacteria, and Proteobacteria shows they are highly similar and often found together. On the other hand, the close association of Ascomycota and Basidiomycota suggesting that they have different ecological roles but occupy similar niches and contribute similar functions within the microbial community. The abundant microbial communities identified in this study had a role in nutrient recycling, soil health, plant resistance to some environmental stress and pests including nematodes, and biogeochemical cycles. Our findings will aid in broadening our understanding of how microbial communities interact with crops and nematodes in the rhizosphere, influencing plant growth and pest management.
Collapse
Affiliation(s)
- Sowndarya Karapareddy
- College of Agricultural, Life & Natural Sciences, Alabama A&M University, Normal, AL, United States
| | - Varsha C. Anche
- College of Agricultural, Life & Natural Sciences, Alabama A&M University, Normal, AL, United States
| | - Sowjanya R. Tamatamu
- College of Agricultural, Life & Natural Sciences, Alabama A&M University, Normal, AL, United States
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Kathy Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Leopold M. Nyochembeng
- College of Agricultural, Life & Natural Sciences, Alabama A&M University, Normal, AL, United States
| | - Antonette Todd
- Department of Agriculture & Natural Resources, Delaware State University, Dover, DE, United States
| | - Lloyd T. Walker
- College of Agricultural, Life & Natural Sciences, Alabama A&M University, Normal, AL, United States
| | - Venkateswara R. Sripathi
- College of Agricultural, Life & Natural Sciences, Alabama A&M University, Normal, AL, United States
| |
Collapse
|
2
|
Goforth M, Obergh V, Park R, Porchas M, Brierley P, Turni T, Patil B, Ravishankar S, Huynh S, Parker CT, Cooper KK. Bacterial diversity of cantaloupes and soil from Arizona and California commercial fields at the point of harvest. PLoS One 2024; 19:e0307477. [PMID: 39325812 PMCID: PMC11426484 DOI: 10.1371/journal.pone.0307477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/05/2024] [Indexed: 09/28/2024] Open
Abstract
Across the United States, melons are a high demand crop reaching a net production of 2.7 million tons in 2020 with an economic value of $915 million dollars. The goal of this study was to characterize the bacterial diversity of cantaloupe rinds and soil from commercial melon fields at the point of harvest from two major production regions, Arizona, and California. Cantaloupes and composite soil samples were collected from three different commercial production fields, including Imperial Valley, CA, Central Valley, CA, and Yuma Valley, AZ, at the point of harvest over a three-month period, and 16S rRNA gene amplicon sequencing was used to assess bacterial diversity and community structure. The Shannon Diversity Index showed higher diversity among soil compared to the cantaloupe rind regardless of the sampling location. Regional diversity of soil differed significantly, whereas there was no difference in diversity on cantaloupe surfaces. Bray-Curtis Principal Coordinate Analysis (PCoA) dissimilarity distance matrix found the samples clustered by soil and melon individually, and then clustered tighter by region for the soil samples compared to the cantaloupe samples. Taxonomic analysis found total families among the regions to be 52 for the soil samples and 12 among cantaloupes from all three locations, but composition and abundance did vary between the three locations. Core microbiome analysis identified two taxa shared among soil and cantaloupe which were Bacillaceae and Micrococcaceae. This study lays the foundation for characterizing the cantaloupe microbiome at the point of harvest that provides the cantaloupe industry with those bacterial families that are potentially present entering post-harvest processing, which could assist in improving cantaloupe safety, shelf-life, cantaloupe quality and other critical aspects of cantaloupe post-harvest practices.
Collapse
Affiliation(s)
- Madison Goforth
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Victoria Obergh
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Richard Park
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Martin Porchas
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Paul Brierley
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tom Turni
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- Produce Safety and Microbiology, Agricultural Research Services, USDA, Albany, California, United States of America
| | - Bhimanagouda Patil
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- USDA, Center of Excellence, Melons, Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas, United States of America
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
| | - Steven Huynh
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, Arizona, United States of America
| | - Craig T. Parker
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, Arizona, United States of America
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- University of California, Agricultural and Natural Resources, Cooperative Extension, Fresno, California, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Goforth M, Obergh V, Park R, Porchas M, Crosby KM, Jifon JL, Ravishankar S, Brierley P, Leskovar DL, Turini TA, Schultheis J, Coolong T, Miller R, Koiwa H, Patil BS, Cooper MA, Huynh S, Parker CT, Guan W, Cooper KK. Bacterial diversity and composition on the rinds of specific melon cultivars and hybrids from across different growing regions in the United States. PLoS One 2024; 19:e0293861. [PMID: 38603714 PMCID: PMC11008840 DOI: 10.1371/journal.pone.0293861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 04/13/2024] Open
Abstract
The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.
Collapse
Affiliation(s)
- Madison Goforth
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Victoria Obergh
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Richard Park
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Martin Porchas
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ, United States of America
| | - Kevin M. Crosby
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
| | - John L. Jifon
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Paul Brierley
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ, United States of America
| | - Daniel L. Leskovar
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Texas A&M System, Uvalde, TX, United States of America
| | - Thomas A. Turini
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- University of California Cooperative Extension, Fresno, CA, United States of America
| | - Jonathan Schultheis
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Timothy Coolong
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - Rhonda Miller
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Department of Animal Science, Texas A&M University, College Station, TX, United States of America
| | - Hisashi Koiwa
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
| | - Bhimanagouda S. Patil
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
| | - Margarethe A. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Steven Huynh
- Produce Safety and Microbiology, Agricultural Research Service, USDA, Albany, CA, United States of America
| | - Craig T. Parker
- Produce Safety and Microbiology, Agricultural Research Service, USDA, Albany, CA, United States of America
| | - Wenjing Guan
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
- Southwest Purdue Agricultural Center, Vincennes, IN, United States of America
| | - Kerry K. Cooper
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ, United States of America
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
4
|
Andriyanov PA, Zhurilov PA, Kashina DD, Tutrina AI, Liskova EA, Razheva IV, Kolbasov DV, Ermolaeva SA. Antimicrobial Resistance and Comparative Genomic Analysis of Elizabethkingia anophelis subsp. endophytica Isolated from Raw Milk. Antibiotics (Basel) 2022; 11:648. [PMID: 35625292 PMCID: PMC9137776 DOI: 10.3390/antibiotics11050648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Elizabethkingia anophelis is an emerging multidrug-resistant pathogen that causes severe nosocomial and community-acquired infections worldwide. We report the first case of E. anophelis isolation in Russia and the first isolation from raw cow's milk. The ML-44 demonstrated resistance to 28 antimicrobials of 33 tested in the disk-diffusion test. Whole genome-based phylogeny showed ML-44 strain clustered together with the F3201 strain isolated from a human patient in Kuwait in 1982. Both strains were a part of the "endophytica" clade. Another clade was formed by subsp. anophelis strains. Each of the E. anophelis compared genomes carried 18 to 21 antibiotic resistance determinants. The ML-44 chromosome harbored nine efflux system genes and three beta-lactamase genes, along with six other antimicrobial resistance genes. In total, 72 virulence genes were revealed. The set of virulence factors was quite similar between different E. anophelis strains and included LPS and capsule encoded genes, type IV pili, oxidative stress response genes, and genes encoding TIVSS and TVISS effectors. The particular interest caused the mip and zmp1 gene homologs, which can be essential for intracellular survival. In sum, our findings suggest that raw milk might be a source of E. anophelis harboring a set of virulence factors and a broad resistance to generally used antimicrobials.
Collapse
Affiliation(s)
- Pavel A. Andriyanov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Pavel A. Zhurilov
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Daria D. Kashina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Anastasia I. Tutrina
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Elena A. Liskova
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Irina V. Razheva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| | - Denis V. Kolbasov
- Federal Research Center for Virology and Microbiology, 601125 Volginsky, Russia;
| | - Svetlana A. Ermolaeva
- Branch in Nizhny Novgorod, Federal Research Center for Virology and Microbiology, 603950 Nizhny Novgorod, Russia; (P.A.Z.); (D.D.K.); (A.I.T.); (E.A.L.); (I.V.R.); (S.A.E.)
| |
Collapse
|
5
|
Gu G, Kroft B, Lichtenwald M, Luo Y, Millner P, Patel J, Nou X. Dynamics of Listeria monocytogenes and the microbiome on fresh-cut cantaloupe and romaine lettuce during storage at refrigerated and abusive temperatures. Int J Food Microbiol 2022; 364:109531. [PMID: 35033975 DOI: 10.1016/j.ijfoodmicro.2022.109531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes (Lm) outbreaks and recalls associated with fresh produce in recent years have heightened concerns and demands from industry and consumers to more effectively mitigate the contamination risk of this foodborne pathogen on fresh produce. In this study, the growth of Lm and indigenous bacteria on fresh-cut cantaloupe and romaine lettuce held at refrigerated (4 °C) and abusive (10-24 °C) temperatures was determined by both culture dependent and independent methods. Composition and dynamics of bacterial communities on Lm inoculated and non-inoculated samples were analyzed by 16S rRNA high-throughput sequencing. Fresh-cut cantaloupe provided favorable growth conditions for Lm proliferation (1.7 and >6 log increase at refrigerated and abusive temperatures, respectively) to overtake indigenous bacteria. The Lm population also increased on fresh-cut lettuce, but the growth rate was lower than that of the total mesophilic bacteria, resulting in 0.4 and >2 log increase at refrigerated and abusive temperatures. Microbial diversity of fresh-cut cantaloupe was significantly lower than that of fresh-cut romaine lettuce. The Shannon index of microbial communities on cantaloupe declined after storage, but it was not significantly changed on lettuce samples. Shifts in the bacterial microbiome on cantaloupe were mainly affected by Lm inoculation, while both inoculation and storage temperature played significant roles on lettuce bacterial communities. Multiple indigenous bacteria, including Leuconostoc and Weissella spp., were negatively correlated to Lm abundance on romaine lettuce, and were determined by bioassay as potential anti-listerial species. Data derived from this study contribute to better understanding of the relationship between Lm and indigenous microbiota on fresh-cut produce during storage.
Collapse
Affiliation(s)
- Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Brenda Kroft
- Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Marina Lichtenwald
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Patricia Millner
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Jitendra Patel
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, MD 20705, USA.
| |
Collapse
|