1
|
Kakumyan P, Yang L, Liu S, Yu C, Li Z, Chen M, Popluechai S, Zhao Y. Comparison of the Bacterial and Fungal Communities and Metabolic Functions of Cottonseed Hull Waste Compost Associated with High and Low Yields of Straw Mushroom Volvariella volvacea. Microorganisms 2025; 13:437. [PMID: 40005802 PMCID: PMC11858250 DOI: 10.3390/microorganisms13020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Volvariella volvacea was grown on cottonseed hull waste compost and divided into high-yield (HBE) and low-yield (LBE) conditions. Gene sequencing was used to examine bacterial and fungal populations during cottonseed husk waste composting. At the end of fermentation, the dominant bacterial genera in the HBE compost were Chelatococcus and Thermobacillus, while Symbiobacterium and Acinetobacter were more abundant in the LBE compost. Ascomycota and Basidiomycota dominated all the composting phases. The Ascomycota genera Colletotrichum, Pichia, Mycothermus, and Thermomyces dominated in phase II of HBE composting. The LBE compost had higher abundances of the Basidiomycota genera Cystofilobasidium and Cryptococcus than the HBE compost. The predicted pathotroph and saprotroph-symbiotroph abundances were more positively linked to HBE composting phase II than to LBE composting. High-biological-efficiency microbial communities are characterized by high pH, carbon, and nitrogen levels. Changes in physiochemical traits, microbial diversity, and metabolism affect the V. volvacea yield.
Collapse
Affiliation(s)
- Pattana Kakumyan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Microbial Products and Innovations Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Lin Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
| | - Shunjie Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
| | - Siam Popluechai
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (P.K.); (L.Y.); (S.L.); (C.Y.); (Z.L.); (M.C.)
| |
Collapse
|
2
|
Napitupulu TP. Agricultural relevance of fungal mycelial growth-promoting bacteria: Mutual interaction and application. Microbiol Res 2025; 290:127978. [PMID: 39591743 DOI: 10.1016/j.micres.2024.127978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Bacterial-fungal interaction (BFI) is found ubiquitously and plays important roles in various environmental settings, thus being responsible for numerous biophysical and chemical processes in nature. In terms of BFI, the capacity of the bacterium to enhance the growth of fungal mycelia is an indication of the roles of the bacterium in mutualistic interaction, since increasing mycelial growth results in higher changes for fungal establishment. In this review, the interaction between mycelial growth-promoting bacterium (MGPB) and its fungal counterpart in agricultural settings and the promotion of mycelial growth as an outcome of mutual interactions in various environmental niches were evaluated. The beneficial relationships included endohyphal interaction, association of bacteria with mushrooms, bacteria-mycorrhizae symbiosis, and geomicrobiology. Furthermore, the mode of interaction between MGPB and their fungal counterparts was also explained. There are two fundamental modes of interaction involved, namely physical interaction and chemical interaction. The first involved endosymbiosis and bacterial attachment, while the latter comprised quorum sensing, volatile metabolites, enzymatic activity, and chemotaxis. Particularly, the growth stimulants secreted by the bacteria, which promote the growth of hyphae, are discussed thoroughly. Moreover, the chance of trade-off metabolites between fungi and their MGPBs as a consequence of mutualistic interaction will also be observed. Finally, the agricultural relevance of BFI, particularly the relation between fungi and MGPBs, will also be provided, including key technologies and future bioprospects for optimum application.
Collapse
Affiliation(s)
- Toga Pangihotan Napitupulu
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km.46, Cibinong 16911, Indonesia.
| |
Collapse
|
3
|
O'Connor E, Vieira FR, Di Tomassi I, Richardson R, Hockett KL, Bull CT, Pecchia JA. Manipulating button mushroom casing affects the disease dynamics of blotch and green mold disease. Fungal Biol 2024; 128:2266-2273. [PMID: 39643393 DOI: 10.1016/j.funbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Productive cultivation of the button mushroom (Agaricus bisporus) relies on the use of selective substrates and effective disease management. In extending our previous work on manipulating the developmental microbiome (devome), this study employs the strategy of substrate passaging to explore its effects on crop outcomes and disease dynamics. Here we subjected the casing substrate to ten cycles of passaging. This manipulated substrate stimulated early pinning (primordia formation) by at least three days. Passaged casing also altered disease dynamics when challenged with two commercially important A. bisporus pathogens, Pseudomonas tolaasii (causing bacterial blotch) and Trichoderma aggressivum f. aggressivum (responsible for green mold). Passaged casing had a suppressive effect on blotch disease and a conducive effect on green mold disease. Blotch suppression resulted in a significantly higher yield of asymptomatic mushrooms in all three mushroom harvests (flushes) and in the overall crop yield. Blotch severity was also significantly reduced in passaged casing compared to standard casing due to a lower yield of mushrooms with the highest degree of blotch disease expression. Green mold disease expression was markedly higher in passaged casing, leading to lower numbers of asymptomatic mushrooms. Zones where no growth of hyphae or mushrooms were also observed in passaged casing due to green mold disease pressure. The stimulating effect of passaged casing on mushroom development and the dynamic outcomes for disease challenge from two distinct, commercially damaging diseases, demonstrates the potential for passaged casing to be used as material to study more sustainable mushroom production and disease management practices.
Collapse
Affiliation(s)
- Eoin O'Connor
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| | - Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Isako Di Tomassi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Rachel Richardson
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - John A Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvanian State University, University Park, PA, USA
| |
Collapse
|
4
|
Noble R, Thai M, Kertesz MA. Nitrogen balance and supply in Australasian mushroom composts. Appl Microbiol Biotechnol 2024; 108:151. [PMID: 38240861 PMCID: PMC10798912 DOI: 10.1007/s00253-023-12933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024]
Abstract
Mushrooms are an important source of protein in the human diet. They are increasingly viewed as a sustainable meat replacement in an era of growing populations, with button mushrooms (Agaricus bisporus) the most popular and economically important mushroom in Europe, Australia and North America. Button mushrooms are cultivated on a defined, straw-derived compost, and the nitrogen (N) required to grow these high-protein foods is provided mainly by the addition of poultry manure and horse manure. Using the correct balance of carbon (C) and N sources to produce mushroom compost is critically important in achieving maximum mushroom yields. Changes in the amount and form of N added, the rate and timing of N addition and the other compost components used can dramatically change the proportion of added N recovered in the mushroom caps, the yield and quality of the mushrooms and the loss of N as ammonia and nitrogen oxide gases during composting. This review examines how N supply for mushroom production can be optimised by the use of a broad range of inorganic and organic N sources for mushroom composting, together with the use of recycled compost leachate, gypsum and protein-rich supplements. Integrating this knowledge into our current molecular understanding of mushroom compost biology will provide a pathway for the development of sustainable solutions in mushroom production that will contribute strongly to the circular economy. KEY POINTS: • Nitrogen for production of mushroom compost can be provided as a much wider range of organic feedstocks or inorganic compounds than currently used • Most of the nitrogen used in production of mushroom compost is not recovered as protein in the mushroom crop • The sustainability of mushroom cropping would be increased through alternative nitrogen management during composting and cropping.
Collapse
Affiliation(s)
- Ralph Noble
- Microbiotech Ltd, Pershore Centre, Pershore, Worcestershire, WR103JP, UK
| | - Meghann Thai
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, LEES Building, Sydney, NSW, 2006, Australia
| | - Michael A Kertesz
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, LEES Building, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Vieira FR, Di Tomassi I, O'Connor E, Bull CT, Pecchia JA, Hockett KL. Manipulating Agaricus bisporus developmental patterns by passaging microbial communities in complex substrates. Microbiol Spectr 2023; 11:e0197823. [PMID: 37831469 PMCID: PMC10714785 DOI: 10.1128/spectrum.01978-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Agaricus bisporus is an economically important edible mushroom and manipulating its developmental patterns is crucial for maximizing yield and quality. One of the potential strategies for achieving such a goal is passaging microbial communities in compost or casing. The current study demonstrated that passaging substrates develop enriched microbial communities, and after a few passages, certain levels of changes in mushroom developmental patterns (the timing of fruiting bodies formation) were observed as well as shifts in the bacterial communities. Overall, a better understanding of the complex interactions between microorganisms present in the cultivation system may help farmers and researchers to develop more efficient and sustainable cultivation practices that can both benefit the environment and human health.
Collapse
Affiliation(s)
- Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - Isako Di Tomassi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - Eoin O'Connor
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - Carolee T. Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
| | - John A. Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, The Pennsylvanian State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Zhang Y, Zhao Q, Uroz S, Gao T, Li J, He F, Rosazlina R, Martin F, Xu L. The cultivation regimes of Morchella sextelata trigger shifts in the community assemblage and ecological traits of soil bacteria. Front Microbiol 2023; 14:1257905. [PMID: 37808313 PMCID: PMC10552182 DOI: 10.3389/fmicb.2023.1257905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The successful large-scale cultivation of morel mushrooms (Morchella sextelata) requires a comprehensive understanding of the soil bacterial communities associated with morel-farming beds, as the interactions between fungi and bacteria play a crucial role in shaping the soil microbiome. In this study, we investigated the temporal distribution and ecological characteristics of soil bacteria associated with morel fruiting bodies at different stages, specifically the conidial and primordial stages, under two cropping regimes, non-continuous cropping (NCC) and continuous cropping (CC). Our findings revealed a significant reduction in the yield of morel primordia during the third year following 2 years of CC (0.29 ± 0.25 primordia/grid), in comparison to the NCC regime (12.39 ± 6.09 primordia/grid). Furthermore, inoculation with morel mycelia had a notable impact on soil bacterial diversity, decreasing it in the NCC regime and increasing the number of generalist bacterial members in the CC regime. The latter regime also led to the accumulation of nutrients in the soil beds, resulting in a shift from a stochastic to a deterministic process in the composition of the bacterial community, which differed from the NCC regime. Additionally, mycelial inoculation had a positive effect on the abundance of potential copiotrophic/denitrifying and N-fixing bacteria while decreasing the abundance of oligotrophic/nitrifying bacteria. Interestingly, this effect was more pronounced in the NCC regime than in the CC regime. These results suggest that the increase in potential copiotrophic/denitrifying and N-fixing bacteria facilitated the decomposition of nutrients in exogenous nutrient bags by morel mushrooms, thereby maintaining nitrogen balance in the soil. Overall, our study provides valuable insights into the interactions between morel mycelia and the associated soil bacteriome as well as the influence of different cultivation regimes on these interactions. These findings contribute to our understanding of the complex dynamics of the soil microbiome and can inform strategies for optimizing morel mushroom cultivation.
Collapse
Affiliation(s)
- Yan Zhang
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Tianpeng Gao
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Jing Li
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Fengqin He
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Rusly Rosazlina
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Lingling Xu
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| |
Collapse
|
7
|
Ban GH, Kim JH, Kim SA, Rhee MS, Choi SY, Hwang IJ, Kim SR. Microbial succession during button mushroom (Agaricus bisporus) production evaluated via high-throughput sequencing. Food Microbiol 2023; 114:104307. [PMID: 37290864 DOI: 10.1016/j.fm.2023.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 06/10/2023]
Abstract
Button mushrooms (Agaricus bisporus), are one of the most widely consumed mushrooms in the world. However, changes within its microbial community as it relates to the use of different raw materials and cultivation methods, as well as potential points of microbial contamination throughout the production process have not been investigated extensively. In the present study, button mushroom cultivation was investigated in each of the four stages (raw materials, composting (phase I, Ⅱ, and Ⅲ), casing, and harvesting), and samples (n = 186) from mushrooms and their related environments were collected from four distinct mushroom-growing farms (A-D) in Korea. Shifts within the bacterial consortium during mushroom production were characterized with 16 S rRNA amplicon sequencing. The succession of bacterial communities on each farm was dependent on the raw material incorporated, aeration, and the farm environment. The dominant phyla of the compost stack at the four farms were Pseudomonadota (56.7%) in farm A, Pseudomonadota (43.3%) in farm B, Bacteroidota (46.0%) in farm C, and Bacillota (62.8%) in farm D. During the Phase Ⅰ, highly heat-resistant microbes, such as those from the phylum Deinococcota (0.6-65.5%) and the families Bacillaceae (1.7-36.3%), Thermaceae (0.1-65.5%), and Limnochordaceae (0.3-30.5%) greatly proliferated. The microbial diversity within compost samples exhibited a marked decline as a result of the proliferation of thermophilic bacteria. In the spawning step, there were considerable increases in Xanthomonadaceae in the pasteurized composts of farms C and D - both of which employed an aeration system. In the harvesting phase, beta diversity correlated strongly between the casing soil layer and pre-harvest mushrooms, as well as between gloves and packaged mushrooms. The results suggest that gloves may be a major source of cross-contamination for packaged mushrooms, highlighting the need for enhanced hygienic practices during the harvesting phase to ensure product safety. These findings contribute to the current understanding of the influence of environmental and adjacent microbiomes on mushroom products to benefit the mushroom industry and relevant stakeholders by ensuring quality production.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Mokpo National University, Muan-gun, South Korea; Research Institute of Human Ecology, Mokpo National University, Muan-gun, South Korea; Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Song Yi Choi
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, South Korea
| | - In Jun Hwang
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, South Korea
| | - Se-Ri Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, South Korea.
| |
Collapse
|
8
|
Phithakrotchanakoon C, Mayteeworakoon S, Siriarchawatana P, Kitikhun S, Harnpicharnchai P, Wansom S, Eurwilaichitr L, Ingsriswang S. Beneficial bacterial- Auricularia cornea interactions fostering growth enhancement identified from microbiota present in spent mushroom substrate. Front Microbiol 2022; 13:1006446. [PMID: 36299733 PMCID: PMC9589457 DOI: 10.3389/fmicb.2022.1006446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Complex dynamic bacterial-fungal interactions play key roles during mushroom growth, ranging from mutualism to antagonism. These interactions convey a large influence on mushroom's mycelial and fruiting body formation during mushroom cultivation. In this study, high-throughput amplicon sequencing was conducted to investigate the structure of bacterial communities in spent mushroom substrates obtained from cultivation of two different groups of Auricularia cornea with (A) high yield and (B) low yield of fruiting body production. It was found that species richness and diversity of microbiota in group (A) samples were significantly higher than in group (B) samples. Among the identified 765 bacterial OTUs, 5 bacterial species found to exhibit high differential abundance between group (A) and group (B) were Pseudonocardia mangrovi, Luteimonas composti, Paracoccus pantotrophus, Sphingobium jiangsuense, and Microvirga massiliensis. The co-cultivation with selected bacterial strains showed that A. cornea TBRC 12900 co-cultivated with P. mangrovi TBRC-BCC 42794 promoted a high level of mycelial growth. Proteomics analysis was performed to elucidate the biological activities involved in the mutualistic association between A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794. After co-cultivation of A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794, 1,616 proteins were detected including 578 proteins of A. cornea origin and 1,038 proteins of P. mangrovi origin. Functional analysis and PPI network construction revealed that the high level of mycelial growth in the co-culture condition most likely resulted from concerted actions of (a) carbohydrate-active enzymes including hydrolases, glycosyltransferases, and carbohydrate esterases important for carbohydrate metabolism and cell wall generation/remodeling, (b) peptidases including cysteine-, metallo-, and serine-peptidases, (c) transporters including the ABC-type transporter superfamily, the FAT transporter family, and the VGP family, and (d) proteins with proposed roles in formation of metabolites that can act as growth-promoting molecules or those normally contain antimicrobial activity (e.g., indoles, terpenes, β-lactones, lanthipeptides, iturins, and ectoines). The findings will provide novel insights into bacterial-fungal interactions during mycelial growth and fruiting body formation. Our results can be utilized for the selection of growth-promoting bacteria to improve the cultivation process of A. cornea with a high production yield, thus conveying potentially high socio-economic impact to mushroom agriculture.
Collapse
Affiliation(s)
- Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supattra Kitikhun
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Piyanun Harnpicharnchai
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supaporn Wansom
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
9
|
Thai M, Safianowicz K, Bell TL, Kertesz MA. Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate. ISME COMMUNICATIONS 2022; 2:88. [PMID: 37938292 PMCID: PMC9723551 DOI: 10.1038/s43705-022-00174-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/29/2023]
Abstract
Button mushrooms (Agaricus bisporus) are grown commercially on a specialized substrate that is usually prepared from wheat straw and poultry manure in a microbially-mediated composting process. The quality and yield of the mushroom crop depends critically on the quality of this composted substrate, but details of the microbial community responsible for compost production have only emerged recently. Here we report a detailed study of microbial succession during mushroom compost production (wetting, thermophilic, pasteurization/conditioning, spawn run). The wetting and thermophilic phases were characterized by a rapid succession of bacterial and fungal communities, with maximum diversity at the high heat stage. Pasteurization/conditioning selected for a more stable community dominated by the thermophilic actinomycete Mycothermus thermophilus and a range of bacterial taxa including Pseudoxanthomonas taiwanensis and other Proteobacteria. These taxa decreased during spawn run and may be acting as a direct source of nutrition for the proliferating Agaricus mycelium, which has previously been shown to use microbial biomass in the compost for growth. Comparison of bacterial communities at five geographically separated composting yards in south-eastern Australia revealed similarities in microbial succession during composting, although the dominant bacterial taxa varied among sites. This suggests that specific microbial taxa or combinations of taxa may provide useful biomarkers of compost quality and may be applied as predictive markers of mushroom crop yield and quality.
Collapse
Affiliation(s)
- Meghann Thai
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Katarzyna Safianowicz
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tina L Bell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael A Kertesz
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Iossi MR, Palú IA, Soares DM, Vieira WG, Alves LS, Stevani CV, Caitano CEC, Atum SVF, Freire RS, Dias ES, Zied DC. Metaprofiling of the Bacterial Community in Colonized Compost Extracts by Agaricus subrufescens. J Fungi (Basel) 2022; 8:jof8100995. [PMID: 36294560 PMCID: PMC9605601 DOI: 10.3390/jof8100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
It is well-known that bacteria and fungi play important roles in the relationships between mycelium growth and the formation of fruiting bodies. The sun mushroom, Agaricus subrufescens, was discovered in Brazil ca. 1960 and it has become known worldwide due to its medicinal and nutritional properties. This work evaluated the bacterial community present in mushroom-colonized compost extract (MCCE) prepared from cultivation of A. subrufescens, its dynamics with two different soaking times and the influence of the application of those extracts on the casing layer of a new compost block for A. subrufescens cultivation. MCCEs were prepared through initial submersion of the colonized compost for 1 h or 24 h in water followed by application on casing under semi-controlled conditions. Full-length 16S rRNA genes of 1 h and 24 h soaked MCCE were amplified and sequenced using nanopore technology. Proteobacteria, followed by Firmicutes and Planctomycetes, were found to be the most abundant phyla in both the 1 h and 24 h soaked MCCE. A total of 275 different bacterial species were classified from 1 h soaked MCCE samples and 166 species from 24 h soaked MCCE, indicating a decrease in the bacterial diversity with longer soaking time during the preparation of MCCE. The application of 24 h soaked MCCE provided increases of 25% in biological efficiency, 16% in precociousness, 53% in the number of mushrooms and 40% in mushroom weight compared to control. Further investigation is required to determine strategies to enhance the yield and quality of the agronomic traits in commercial mushroom cultivation.
Collapse
Affiliation(s)
- Matheus Rodrigo Iossi
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil
| | - Isabela Arruda Palú
- Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Universidade Estadual Paulista (UNESP), São Paulo 17900-000, Brazil
| | - Douglas Moraes Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-220, Brazil
| | - Wagner G. Vieira
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil
| | - Lucas Silva Alves
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil
| | - Cassius V. Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-220, Brazil
| | - Cinthia E. C. Caitano
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil
| | - Samir V. F. Atum
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-220, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-220, Brazil
| | - Renato S. Freire
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-220, Brazil
| | - Eustáquio S. Dias
- Departamento de Biologia, Universidade Federal de Lavras (UFLA), Lavras 37200-900, Brazil
| | - Diego Cunha Zied
- Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Universidade Estadual Paulista (UNESP), São Paulo 17900-000, Brazil
- Correspondence: or
| |
Collapse
|
11
|
Feeding growing button mushrooms: The role of substrate mycelium to feed the first two flushes. PLoS One 2022; 17:e0270633. [PMID: 35881577 PMCID: PMC9321441 DOI: 10.1371/journal.pone.0270633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
A number of experiments were done to further our understanding of the substrate utilization in button mushroom crops (Agaricus bisporus). An analysis of the degradation of dry matter of the substrate during a crop cycle revealed that for pin formation the upper 1/3rd layer is used, for the production of flush one all layers are involved and for flush two mainly the lower 1/3 layer is used. A reduction in substrate depth leads to a decrease in yield/m2 but an apparent increase in yield per tonne of substrate with a lower mushroom quality. A short daily interruption of the connection between the casing soil with the substrate results in a delay of the first flush. Interruptions with only part of the substrate did not lead to delay in production. Daily interruption of the connection with all or only part of the substrate leads to a shift in yield from flush one to flush two but the total yield remains unchanged. The mycelial biomass in the substrate increases from filling up to pinning, has a steeper increase during flush one, and is levelling off during flush two, indicating that in the period of venting and up to/including flush one, enzymes are secreted by growing hyphae generating nutrients to feed a fixed amount of mushroom biomass for two flushes. A sidewise extension of the substrate (without casing soil, thus not producing mushrooms) showed that the substrate at a distance more than somewhere between 20-50 cm away from the casing soil does not contribute to feeding mushrooms in the first two flushes. The observations are discussed with respect to relevant previous research.
Collapse
|
12
|
Suwannarach N, Kumla J, Zhao Y, Kakumyan P. Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. BIOLOGY 2022; 11:biology11040569. [PMID: 35453768 PMCID: PMC9027886 DOI: 10.3390/biology11040569] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Lignocellulosic material and substrate formulations affect mushroom productivity. The microbial community in cultivation substrates affects the quality of the substrates and the efficiency of mushroom production. The elucidation of the key microbes and their biochemical function can serve as a useful guide in the development of a more effective system for mushroom cultivation. Abstract Lignocellulosic materials commonly serve as base substrates for mushroom production. Cellulose, hemicellulose, and lignin are the major components of lignocellulose materials. The composition of these components depends upon the plant species. Currently, composted and non-composted lignocellulosic materials are used as substrates in mushroom cultivation depending on the mushroom species. Different substrate compositions can directly affect the quality and quantity of mushroom production yields. Consequently, the microbial dynamics and communities of the composting substrates can significantly affect mushroom production. Therefore, changes in both substrate composition and microbial diversity during the cultivation process can impact the production of high-quality substrates and result in a high degree of biological efficiency. A brief review of the current findings on substrate composition and microbial diversity for mushroom cultivation is provided in this paper. We also summarize the advantages and disadvantages of various methods of mushroom cultivation by analyzing the microbial diversity of the composting substrates during mushroom cultivation. The resulting information will serve as a useful guide for future researchers in their attempts to increase mushroom productivity through the selection of suitable substrate compositions and their relation to the microbial community.
Collapse
Affiliation(s)
- Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (Y.Z.); (P.K.)
| | - Pattana Kakumyan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (Y.Z.); (P.K.)
| |
Collapse
|