1
|
Rojero M, Weaver-Rosen M, Serwer P. Bypassing Evolution of Bacterial Resistance to Phages: The Example of Hyper-Aggressive Phage 0524phi7-1. Int J Mol Sci 2025; 26:2914. [PMID: 40243527 PMCID: PMC11988461 DOI: 10.3390/ijms26072914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The ideal bacteriophages (phages) for the treatment of bacterial disease (phage therapy) would bypass bacterial evolution to phage resistance. However, this feature (called a hyper-aggression feature) has never been observed to our knowledge. Here, we microbiologically characterize, fractionate, genomically classify, and perform electron microscopy of the newly isolated Bacillus thuringiensis phage 0524phi7-1, which we find to have this hyper-aggression feature. Even visible bacterial colonies are cleared. Phage 0524phi7-1 also has three other features classified under hyper-aggression (four-feature-hyper-aggressive phage). (1) Phage 0524phi7-1 forms plaques that, although sometimes beginning as semi-turbid, eventually clear. (2) Clear plaques continue to enlarge for days. No phage-resistant bacteria are detected in cleared zones. (3) Plaques sometimes have smaller satellite plaques, even in gels so concentrated that the implied satellite-generating phage motion is not bacterial host generated. In addition, electron microscopy reveals that phage 0524phi7-1 (1) is a myophage with an isometric, 91 nm-head (diameter) and 210 nm-long contractile tail, and (2) undergoes extensive aggregation, which inhibits typical studies of phage physiology. The genome is linear double-stranded DNA, which, by sequencing, is 157.103 Kb long: family, Herelleviridae; genus, tsarbombavirus. The data suggest the hypothesis that phage 0524phi7-1 undergoes both swimming and hibernation. Techniques are implied for isolating better phages for phage therapy.
Collapse
Affiliation(s)
- Maria Rojero
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA;
| | - Meagan Weaver-Rosen
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| |
Collapse
|
2
|
Johnson BJ, Hereward JP, Wilson R, Furlong MJ, Devine GJ. A review of the potential impacts of coastal mosquito control programs on Australian Stingless Bees (Apidae, Meliponini)-likely exposure pathways and lessons learned from studies on honey bees. ENVIRONMENTAL ENTOMOLOGY 2024; 53:894-907. [PMID: 39373633 DOI: 10.1093/ee/nvae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
The impact of the programmatic use of larvicides for mosquito control on native stingless bees (e.g., Apidae, Meliponini) is a growing concern in Australia due to heightened conservation awareness and the growth of hobbyist stingless bee keeping. In Australia, the two most widely used mosquito larvicides are the bacterium Bacillus thuringiensis var. israelensis (Bti) and the insect hormone mimic methoprene (as S-methoprene). Each has a unique mode of action that could present a risk to stingless bees and other pollinators. Herein, we review the potential impacts of these larvicides on native Australian bees and conclude that their influence is mitigated by their low recommended field rates, poor environmental persistence, and the seasonal and intermittent nature of mosquito control applications. Moreover, evidence suggests that stingless bees may display a high physiological tolerance to Bti similar to that observed in honey bees (Apis mellifera), whose interactions with B. thuringiensis-based biopesticides are widely reported. In summary, neither Bti or methoprene is likely to pose a significant risk to the health of stingless bees or their nests. However, current knowledge is limited by regulatory testing requirements that only require the use of honey bees as toxicological models. To bridge this gap, we suggest that regulatory testing is expanded to include stingless bees and other nontarget insects. This is imperative for improving our understanding of the potential risks that these and other pesticides may pose to native pollinator conservation.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James P Hereward
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Rachele Wilson
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Michael J Furlong
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
3
|
Wueppenhorst K, Alkassab AT, Beims H, Ernst U, Friedrich E, Illies I, Janke M, Kirchner WH, Seidel K, Steinert M, Yurkov A, Erler S, Odemer R. Honey bee colonies can buffer short-term stressor effects of pollen restriction and fungicide exposure on colony development and the microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116723. [PMID: 39024947 DOI: 10.1016/j.ecoenv.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany.
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| | - Hannes Beims
- Fachberatung für Imkerei, Bezirk Oberbayern, Prinzregentenstraße 14, München 80538, Germany; Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Ulrich Ernst
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim, Stuttgart, Germany
| | - Elsa Friedrich
- State Institute of Bee Research, University of Hohenheim, Erna-Hruschka-Weg 6, Stuttgart 70599, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, An der Steige 15, Veitshöchheim 97209, Germany
| | - Martina Janke
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Wolfgang H Kirchner
- Behavioral Biology and Biology Education, Ruhr-University-Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Kim Seidel
- Institute for Apicuture, Lower Saxony State Office for Consumer Protection and Food Safety, Herzogin-Eleonore-Allee 5, Celle 29221, Germany
| | - Michael Steinert
- Institute for Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Andrey Yurkov
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz Institute, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelsohnstraße 4, Braunschweig 38106, Germany
| | - Richard Odemer
- Institute for Bee Protection, Julius Kuehn-Institute, Messeweg 11-12, Braunschweig 38104, Germany
| |
Collapse
|
4
|
Alkassab AT, Erler S, Steinert M, Pistorius J. Exposure of honey bees to mixtures of microbial biopesticides and their effects on bee survival under laboratory conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26618-26627. [PMID: 38453759 PMCID: PMC11052877 DOI: 10.1007/s11356-024-32753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Biopesticides, having as active ingredients viruses, bacteria, or fungi, are developed to substitute or reduce the use of chemical plant protection products in different agrosystems. Though the application of mixtures containing several products is a common practice, interactions between microbial biopesticides and related effects on bees as non-target organisms have not been studied yet. In the current study, we exposed winter bees to five different microbial-based products and their combinations at the maximum recommended application rate to assess their responses. Laboratory oral exposure tests (acute/chronic) to single or binary products were conducted. Survival and food consumption of the tested bees were evaluated over the experimental duration. Our results show that some product combinations have potential additive or synergistic effects on bees, whereas others did not affect the bee's survival compared to the control. Exposure of tested bees to the most critical combination of products containing Bacillus thuringiensis aizawai ABTS-1857 and B. amyloliquefaciens QST 713 strongly resulted in a median lifespan of 4.5 days compared to 8.0 and 8.5 days after exposure to the solo products, respectively. The exposure to inactivated microorganisms by autoclaving them did not differ from their respective uncontaminated negative controls, indicating effects on bee mortality might originate in the treatment with the different microorganisms or their metabolites. Further investigations should be conducted under field conditions to prove the magnitude of observed effects on bee colonies and other bee species.
Collapse
Affiliation(s)
- Abdulrahim T Alkassab
- Institute for Bee Protection, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Silvio Erler
- Institute for Bee Protection, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104, Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brauschweig, Germany
| | - Michael Steinert
- Institut Für Mikrobiologie, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104, Braunschweig, Germany
| |
Collapse
|
5
|
Li W, Li X, Wang W, Zhang S, Cui J, Peng Y, Zhao Y. Impact of Sulfoxaflor Exposure on Bacterial Community and Developmental Performance of the Predatory Ladybeetle Propylea japonica. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02122-5. [PMID: 36242623 DOI: 10.1007/s00248-022-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Insects maintain a vast number of symbiotic bacteria, and these symbionts play key roles in the hosts' life processes. Propylea japonica (Coleoptera: Coccinellidae) is an abundant and widespread ladybeetle in agricultural fields in Asia. Both larvae and adults of P. japonica are likely to be exposed to insecticide residue in the field during their predatory activity. Sulfoxaflor is a highly powerful insecticide that has strong efficacy in controlling sap-sucking pests. To date, there have been several studies on the acute and long-term toxicity of sulfoxaflor to insects, but few studies have reported the impact of sulfoxaflor on the predators' micro-ecosystems. This study was to determine the impact of sulfoxaflor on the symbiotic bacteria and developmental performance of P. japonica. In the present study, two concentrations (1 mg/L and 5 mg/L) and two exposure periods (1 day and 5 days) were set for P. japonica under sulfoxaflor exposure. The survival rate, developmental duration, pupation rate, emergence rate, and body weight of P. japonica were examined. Moreover, the bacterial community of P. japonica was investigated by high-throughput 16S ribosomal RNA gene sequencing. Our results indicated that bacterial community of P. japonica was mainly composed of Staphylococcus, Pantoea, Acinetobacter, Rhodococcus, and Ralstonia at the genus level. The bacterial community of P. japonica in 1 mg/L and 5 mg/L sulfoxaflor groups was significantly altered on day 1, compared with that in control group. The results also showed that the larval duration was significantly prolonged but the pupal duration was significantly shortened in both sulfoxaflor groups. Meanwhile, the pupation and emergence rate was not significantly changed, but the body weights of adults were significantly decreased in both sulfoxaflor groups. Our study will provide a new perspective for evaluating the safety of pesticides to beneficial arthropods.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xueqing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenrong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
6
|
Erler S, Eckert JH, Steinert M, Alkassab AT. Impact of microorganisms and entomopathogenic nematodes used for plant protection on solitary and social bee pollinators: Host range, specificity, pathogenicity, toxicity, and effects of experimental parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119051. [PMID: 35219794 DOI: 10.1016/j.envpol.2022.119051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Pollinating bees are stressed by highly variable environmental conditions, malnutrition, parasites and pathogens, but may also by getting in contact with microorganisms or entomopathogenic nematodes that are used to control plant pests and diseases. While foraging for water, food, or nest material social as well as solitary bees have direct contact or even consume the plant protection product with its active substance (e.g., viruses, bacteria, fungi, etc.). Here, we summarize the results of cage, microcolony, observation hive assays, semi-field and field studies using full-size queen-right colonies. By now, some species and subspecies of the Western and Eastern honey bee (Apis mellifera, A. cerana), few species of bumble bees, very few stingless bee species and only a single species of leafcutter bees have been studied as non-target host organisms. Survival and reproduction are the major criteria that have been evaluated. Especially sublethal effects on the bees' physiology, immune response and metabolisms will be targets of future investigations. By studying infectivity and pathogenic mechanisms, individual strains of the microorganism and impact on different bee species are future challenges, especially under field conditions. Overall, it became evident that honey bees, bumble bees and few stingless bee species may not be suitable surrogate species to make general conclusions for biological mechanisms of bee-microorganism interactions of other social bee species. Solitary bees have been studied on leafcutter bees (Megachile rotundata) only, which shows that this huge group of bees (∼20,000 species worldwide) is right at the beginning to get an insight into the interaction of wild pollinators and microbial plant protection organisms.
Collapse
Affiliation(s)
- Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Jakob H Eckert
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| |
Collapse
|