1
|
Zhou F, Sun S, Song X, Zhang Y, Li Z, Chen J. Captive-rearing changes the gut microbiota of the bumblebee Bombus lantschouensis native to China. PeerJ 2025; 13:e18964. [PMID: 39959822 PMCID: PMC11830364 DOI: 10.7717/peerj.18964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Bumblebees play crucial roles as pollinators in both natural agricultural and ecological systems. Their health and overall fitness are significantly affected by the gut microbiota, which can maintain intestinal homeostasis in hosts by regulating their nutritional metabolism. However, information about the diversity of the gut microbiota and related functional changes during artificial rearing of native species is currently limited. This study investigated the dynamic remodeling of gut microbiota in the Chinese native bumblebee Bombus lantschouensis under captive rearing, supported by 16S rRNA amplicon sequencing of bacterial DNA. The typical microbial community composition of the bumblebee was detected in the gut of wild B. lantschouensis, with species of genus Gilliamella and Snodgrassella identified as the dominant strains. Conversely, the microbiota of the captive-reared group showed increased diversity and decreased abundance of certain species of microorganisms. The populations of Bifidobacterium, Saccharibacter, and Lactobacillus, including Firm-4 and Firm-5, were dramatically increased after captive-rearing and became the dominant bacteria, while Gilliamella and Snodgrassella were strikingly reduced. Notably, this study found that pathogenic bacteria appeared in the intestines of wild-caught B. lantschouensis and disappeared when the host was reared under captive conditions. This study shows microbial community changes in bumblebees and facilitates the study of physiological metabolism in the commercial rearing of insects.
Collapse
Affiliation(s)
- Feng Zhou
- College of Science, The Northwest Normal University, Lanzhou, Gansu, China
| | - Shuning Sun
- College of Science, The Northwest Normal University, Lanzhou, Gansu, China
| | - Xinge Song
- College of Science, The Northwest Normal University, Lanzhou, Gansu, China
| | - Yuying Zhang
- College of Science, The Northwest Normal University, Lanzhou, Gansu, China
| | - Zhuanxia Li
- College of Science, The Northwest Normal University, Lanzhou, Gansu, China
| | - Jiani Chen
- College of Science, The Northwest Normal University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Maccaro JJ, Figueroa LL, McFrederick QS. From pollen to putrid: Comparative metagenomics reveals how microbiomes support dietary specialization in vulture bees. Mol Ecol 2024; 33:e17421. [PMID: 38828760 DOI: 10.1111/mec.17421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
For most animals, the microbiome is key for nutrition and pathogen defence, and is often shaped by diet. Corbiculate bees, including honey bees, bumble bees, and stingless bees, share a core microbiome that has been shaped, at least in part, by the challenges associated with pollen digestion. However, three species of stingless bees deviate from the general rule of bees obtaining their protein exclusively from pollen (obligate pollinivores) and instead consume carrion as their sole protein source (obligate necrophages) or consume both pollen and carrion (facultative necrophages). These three life histories can provide missing insights into microbiome evolution associated with extreme dietary transitions. Here, we investigate, via shotgun metagenomics, the functionality of the microbiome across three bee diet types: obligate pollinivory, obligate necrophagy, and facultative necrophagy. We find distinct differences in microbiome composition and gene functional profiles between the diet types. Obligate necrophages and pollinivores have more specialized microbes, whereas facultative necrophages have a diversity of environmental microbes associated with several dietary niches. Our study suggests that necrophagous bee microbiomes may have evolved to overcome cellular stress and microbial competition associated with carrion. We hypothesize that the microbiome evolved social phenotypes, such as biofilms, that protect the bees from opportunistic pathogens present on carcasses, allowing them to overcome novel nutritional challenges. Whether specific microbes enabled diet shifts or diet shifts occurred first and microbial evolution followed requires further research to disentangle. Nonetheless, we find that necrophagous microbiomes, vertebrate and invertebrate alike, have functional commonalities regardless of their taxonomy.
Collapse
Affiliation(s)
- Jessica J Maccaro
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Laura L Figueroa
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
3
|
Cerqueira AES, Lima HS, Silva LCF, Veloso TGR, de Paula SO, Santana WC, da Silva CC. Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission. FEMS Microbiol Ecol 2024; 100:fiae063. [PMID: 38650068 PMCID: PMC11217820 DOI: 10.1093/femsec/fiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Melipona gut microbiota differs from other social bees, being characterized by the absence of crucial corbiculate core gut symbionts and a high occurrence of environmental strains. We studied the microbial diversity and composition of three Melipona species and their honey to understand which strains are obtained by horizontal transmission (HT) from the pollination environment, represent symbionts with HT from the hive/food stores or social transmission (ST) between nestmates. Bees harbored higher microbial alpha diversity and a different and more species-specific bacterial composition than honey. The fungal communities of bee and honey samples are also different but less dissimilar. As expected, the eusocial corbiculate core symbionts Snodgrassella and Gilliamella were absent in bees that had a prevalence of Lactobacillaceae - including Lactobacillus (formerly known as Firm-5), Bifidobacteriaceae, Acetobacteraceae, and Streptococcaceae - mainly strains close to Floricoccus, a putative novel symbiont acquired from flowers. They might have co-evolved with these bees via ST, and along with environmental Lactobacillaceae and Pectinatus (Veillonellaceae) strains obtained by HT, and Metschnikowia and Saccharomycetales yeasts acquired by HT from honey or the pollination environment, including plants/flowers, possibly compose the Melipona core microbiota. This work contributes to the understanding of Melipona symbionts and their modes of transmission.
Collapse
Affiliation(s)
- Alan Emanuel Silva Cerqueira
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
- Department of Integrative Biology, The University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX, United States
| | - Helena Santiago Lima
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Lívia Carneiro Fidélis Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Tomás Gomes Reis Veloso
- Laboratorio de Associações Micorrízicas, Universidade Federal de Viçosa, Departamento de Microbiologia, Av. P.H. Rolfs, s/n – Campus Universitário, Bioagro – sala 313, Viçosa – Minas Gerais, Brazil
| | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 241, Viçosa – Minas Gerais, Brazil
| | - Weyder Cristiano Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rod. MG 230 Km 08 - Campus Universitário, Rio Paranaíba – Minas Gerais, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa,Av. P.H. Rolfs, s/n – Campus Universitário, Viçosa – Minas Gerais, Brazil
| | - Cynthia Canêdo da Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| |
Collapse
|
4
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Caesar L, Haag KL. Tailed bacteriophages (Caudoviricetes) dominate the microbiome of a diseased stingless bee. Genet Mol Biol 2024; 46:e20230120. [PMID: 38252058 PMCID: PMC10802228 DOI: 10.1590/1678-4685-gmb-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Bacteriophages, viruses that infect bacterial hosts, are known to rule the dynamics and diversity of bacterial populations in a number of ecosystems. Bacterial communities residing in the gut of animals, known as the gut microbiome, have revolutionized our understanding of many diseases. However, the gut phageome, while of apparent importance in this context, remains an underexplored area of research. Here we identify for the first time genomic sequences from tailed viruses (Caudoviricetes) that are associated with the microbiome of stingless bees (Melipona quadrifasciata). Both DNA and RNA were extracted from virus particles isolated from healthy and diseased forager bees, the latter showing symptoms from an annual syndrome that only affects M. quadrifasciata. Viral contigs from previously sequenced metagenomes of healthy and diseased forager bees were used for the analyses. Using conserved proteins deduced from their genomes, we found that Caudoviricetes were only present in the worker bee gut microbiome from diseased stingless bees. The most abundant phages are phylogenetically related to phages that infect Gram-positive bacteria from the order Lactobacillales and Gram-negative bacteria from the genus Gilliamella and Bartonella, that are common honey bee symbionts. The potential implication of these viruses in the M. quadrifasciata syndrome is discussed.
Collapse
Affiliation(s)
- Lilian Caesar
- Indiana University Bloomington, Department of Biology, Bloomington, IN, USA
| | - Karen Luisa Haag
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
de Paula GT, Melo WGDP, de Castro I, Menezes C, Paludo CR, Rosa CA, Pupo MT. Further evidences of an emerging stingless bee-yeast symbiosis. Front Microbiol 2023; 14:1221724. [PMID: 37637114 PMCID: PMC10450959 DOI: 10.3389/fmicb.2023.1221724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Symbiotic interactions between microorganisms and social insects have been described as crucial for the maintenance of these multitrophic systems, as observed for the stingless bee Scaptotrigona depilis and the yeast Zygosaccharomyces sp. SDBC30G1. The larvae of S. depilis ingest fungal filaments of Zygosaccharomyces sp. SDBC30G1 to obtain ergosterol, which is the precursor for the biosynthesis of ecdysteroids that modulate insect metamorphosis. In this work, we find a similar insect-microbe interaction in other species of stingless bees. We analyzed brood cell samples from 19 species of stingless bees collected in Brazil. The osmophilic yeast Zygosaccharomyces spp. was isolated from eight bee species, namely Scaptotrigona bipunctata, S. postica, S. tubiba, Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M. bicolor, and Partamona helleri. These yeasts form pseudohyphae and also accumulate ergosterol in lipid droplets, similar to the pattern observed for S. depilis. The phylogenetic analyses including various Zygosaccharomyces revealed that strains isolated from the brood cells formed a branch separated from the previously described Zygosaccharomyces species, suggesting that they are new species of this genus and reinforcing the symbiotic interaction with the host insects.
Collapse
Affiliation(s)
- Gabriela Toninato de Paula
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Weilan Gomes da Paixão Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Center for Agricultural and Natural Sciences and Letters, State University of the Tocantina Region of Maranhão, Estreito, Brazil
| | - Ivan de Castro
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Camila Raquel Paludo
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Tallarico Pupo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
8
|
Sarton-Lohéac G, Nunes da Silva CG, Mazel F, Baud G, de Bakker V, Das S, El Chazli Y, Ellegaard K, Garcia-Garcera M, Glover N, Liberti J, Nacif Marçal L, Prasad A, Somerville V, Bonilla-Rosso G, Engel P. Deep Divergence and Genomic Diversification of Gut Symbionts of Neotropical Stingless Bees. mBio 2023; 14:e0353822. [PMID: 36939321 PMCID: PMC10128065 DOI: 10.1128/mbio.03538-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Social bees harbor conserved gut microbiotas that may have been acquired in a common ancestor of social bees and subsequently codiversified with their hosts. However, most of this knowledge is based on studies on the gut microbiotas of honey bees and bumblebees. Much less is known about the gut microbiotas of the third and most diverse group of social bees, the stingless bees. Specifically, the absence of genomic data from their microbiotas presents an important knowledge gap in understanding the evolution and functional diversity of the social bee microbiota. Here, we combined community profiling with culturing and genome sequencing of gut bacteria from six neotropical stingless bee species from Brazil. Phylogenomic analyses show that most stingless bee gut isolates form deep-branching sister clades of core members of the honey bee and bumblebee gut microbiota with conserved functional capabilities, confirming the common ancestry and ecology of their microbiota. However, our bacterial phylogenies were not congruent with those of the host, indicating that the evolution of the social bee gut microbiota was not driven by strict codiversification but included host switches and independent symbiont gain and losses. Finally, as reported for the honey bee and bumblebee microbiotas, we found substantial genomic divergence among strains of stingless bee gut bacteria, suggesting adaptation to different host species and glycan niches. Our study offers first insights into the genomic diversity of the stingless bee microbiota and highlights the need for broader samplings to understand the evolution of the social bee gut microbiota. IMPORTANCE Stingless bees are the most diverse group of the corbiculate bees and represent important pollinator species throughout the tropics and subtropics. They harbor specialized microbial communities in their gut that are related to those found in honey bees and bumblebees and that are likely important for bee health. Few bacteria have been cultured from the gut of stingless bees, which has prevented characterization of their genomic diversity and functional potential. Here, we established cultures of major members of the gut microbiotas of six stingless bee species and sequenced their genomes. We found that most stingless bee isolates belong to novel bacterial species distantly related to those found in honey bees and bumblebees and encoding similar functional capabilities. Our study offers a new perspective on the evolution of the social bee gut microbiota and presents a basis for characterizing the symbiotic relationships between gut bacteria and stingless bees.
Collapse
Affiliation(s)
- Garance Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Gilles Baud
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sudip Das
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yassine El Chazli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kirsten Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Natasha Glover
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lorena Nacif Marçal
- Department of Morphology, Instituto de Ciências Biológicas, Federal University of Amazonas, Manaus, Brazil
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Yeasts from the nests of two Amazonian stingless bees: screening and PCR-RFLP molecular analysis. Symbiosis 2022. [DOI: 10.1007/s13199-022-00865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|