1
|
Shao Q, Ran Q, Li X, Dong C, Zhang Y, Han Y. Differential responses of the phyllosphere abundant and rare microbes of Eucommia ulmoides to phytohormones. Microbiol Res 2024; 286:127798. [PMID: 38964073 DOI: 10.1016/j.micres.2024.127798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Phyllosphere microbiota play a crucial role in plant productivity and adaptation, and the abundant and rare microbial taxa often possess distinct characteristics and ecological functions. However, it is unclear whether the different subcommunities of phyllosphere microbiota respond variably to the factors that influence their formation, which limits the understanding of community assembly. The effects of two phytohormones, namely, indole-3-acetic acid (IAA) and N6-(delta 2-isopentenyl)-adenine (IP), on the phyllosphere microbial subcommunities of Eucommia ulmoides were investigated using potted experiments. The results demonstrated that the phytohormones induced significant variations in the composition, diversity, and function of the abundant microbial subcommunity in the phyllosphere of E. ulmoides, however, their effects on the rare subcommunity were negligible, and their effects on the moderate subcommunity were between those of the abundant and rare taxa. The phytohormones also induced significant alterations in the phenotypic and physiological properties of E. ulmoides, which indirectly affected the phyllosphere microbial community. Leaf thickness and average leaf area were the main phenotypic variables that affected the composition of the phyllosphere microbial community. The total alkaloid content and activity of superoxide dismutase (SOD) were the main physiological variables that affected the composition of the phyllosphere microbial community. The phenotypic and physiological indices of E. ulmoides explained the variations in the phyllosphere microbial subcommunities in descending order: abundant > moderate > rare taxa. These variables explained a significant proportion of the variations in the abundant taxa, and an insignificant proportion of the variations in the rare taxa. This study improves our understanding of the assembly of the phyllosphere microbiota, which provides important theoretical knowledge for future sustainable agriculture and forestry management based on the precise regulation of phyllosphere microbiota.
Collapse
Affiliation(s)
- Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qingsong Ran
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xu Li
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yanwei Zhang
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Shi B, Cheng X, Jiang S, Pan J, Zhu D, Lu Z, Jiang Y, Liu C, Guo H, Xie J. Unveiling the power of COD/N on constructed wetlands in a short-term experiment: Exploring microbiota co-occurrence patterns and assembly dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169568. [PMID: 38143001 DOI: 10.1016/j.scitotenv.2023.169568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood. In this study, we conducted comprehensive mechanistic experiments to investigate the response of CWs to changes in influent CNR, focusing on the effluent, rhizosphere, and substrate microbiota. Our goal is to provide new insights into CW management by integrating microbial ecology and environmental engineering perspectives. We constructed two groups of horizontal subsurface flow constructed wetlands (HFCWs) and set up three influent CNRs to analyse the microbial responses and nutrient removal. The results indicated that increasing influent CNR led to a decrease in microbial α-diversity and niche width. Genera involved in nitrogen removal and denitrification, such as Rhodobacter, Desulfovibrio, and Zoogloea, were enriched under medium/high CNR conditions, resulting in higher nitrate (NO3--N) removal (up to 99 %) than that under lower CNR conditions (<60 %). Environmental factors, including water temperature (WT), pH, and phosphorus (P), along with CNR-induced COD and NO3--N play important roles in microbial succession in HFCWs. The genus Nitrospira, which is involved in nitrification, exhibited a significant negative correlation (p < 0.05) with WT, COD, and P. Co-occurrence network analysis revealed that increasing influent CNR reduced the complexity of the network structure and increased microbial competition. Analysis using null models demonstrated that the microbial community assembly in HFCWs was primarily driven by stochastic processes under increasing influent CNR conditions. Furthermore, HFCWs with more stochastic microbial communities exhibited better denitrification performance (NO3--N removal). Overall, this study enhances our understanding of nutrient removal, microbial co-occurrence, and assembly mechanisms in CWs under varying influent CNRs.
Collapse
Affiliation(s)
- Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China.
| | - Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Junheng Pan
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Zhuoyin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Yuheng Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Chunsheng Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Heyi Guo
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|