1
|
Bange L, Rahimzadeh A, Mukhina T, von Klitzing R, Hoffmann I, Schneck E. Small-Angle and Quasi-Elastic Neutron Scattering from Polydisperse Oligolamellar Vesicles Containing Glycolipids. J Phys Chem Lett 2025; 16:1327-1335. [PMID: 39873628 DOI: 10.1021/acs.jpclett.4c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, n, which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial. To overcome this problem, we propose a method to model the NSE data in a rigorous fashion based on the obtained histograms of n and on their q-dependent intensity-weighted contribution. This procedure yields meaningful values for the bending rigidity of individual lipid membranes and insights into the mechanical coupling between adjacent membrane lamellae including the effect of the glycolipids.
Collapse
Affiliation(s)
- Lukas Bange
- Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Amin Rahimzadeh
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Tetiana Mukhina
- Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | | | - Emanuel Schneck
- Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
2
|
Speer D, Salvador-Castell M, Huang Y, Liu GY, Sinha SK, Parikh AN. Surfactant-Mediated Structural Modulations to Planar, Amphiphilic Multilamellar Stacks. J Phys Chem B 2023; 127:7497-7508. [PMID: 37584633 PMCID: PMC10476200 DOI: 10.1021/acs.jpcb.3c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The hydrophobic effect, a ubiquitous process in biology, is a primary thermodynamic driver of amphiphilic self-assembly. It leads to the formation of unique morphologies including two highly important classes of lamellar and micellar mesophases. The interactions between these two types of structures and their involved components have garnered significant interest because of their importance in key biochemical technologies related to the isolation, purification, and reconstitution of membrane proteins. This work investigates the structural organization of mixtures of the lamellar-forming phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and two zwitterionic micelle-forming surfactants, being n-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (Zwittergent 3-12 or DDAPS) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (O-Lyso-PC), when assembled by water vapor hydration with X-ray diffraction measurements, brightfield optical microscopy, wide-field fluorescence microscopy, and atomic force microscopy. The results reveal that multilamellar mesophases of these mixtures can be assembled across a wide range of POPC to surfactant (POPC:surfactant) concentration ratios, including ratios far surpassing the classical detergent-saturation limit of POPC bilayers without significant morphological disruptions to the lamellar motif. The mixed mesophases generally decreased in lamellar spacing (D) and headgroup-to-headgroup distance (Dhh) with a higher concentration of the doped surfactant, but trends in water layer thickness (Dw) between each bilayer in the stack are highly variable. Further structural characteristics including mesophase topography, bilayer thickness, and lamellar rupture force were revealed by atomic force microscopy (AFM), exhibiting homogeneous multilamellar stacks with no significant physical differences with changes in the surfactant concentration within the mesophases. Taken together, the outcomes present the assembly of unanticipated and highly unique mixed mesophases with varied structural trends from the involved surfactant and lipidic components. Modulations in their structural properties can be attributed to the surfactant's chemical specificity in relation to POPC, such as the headgroup hydration and the hydrophobic chain tail mismatch. Taken together, our results illustrate how specific chemical complexities of surfactant-lipid interactions can alter the morphologies of mixed mesophases and thereby alter the kinetic pathways by which surfactants dissolve lipid mesophases in bulk aqueous solutions.
Collapse
Affiliation(s)
- Daniel
J. Speer
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Marta Salvador-Castell
- Department
of Physics, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yuqi Huang
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Gang-Yu Liu
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sunil K. Sinha
- Department
of Physics, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Atul N. Parikh
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Biomedical Engineering, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Sun K, Shoaib T, Rutland MW, Beller J, Do C, Espinosa-Marzal RM. Insight into the assembly of lipid-hyaluronan complexes in osteoarthritic conditions. Biointerphases 2023; 18:021005. [PMID: 37041102 DOI: 10.1116/6.0002502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Interactions between molecules in the synovial fluid and the cartilage surface may play a vital role in the formation of adsorbed films that contribute to the low friction of cartilage boundary lubrication. Osteoarthritis (OA) is the most common degenerative joint disease. Previous studies have shown that in OA-diseased joints, hyaluronan (HA) not only breaks down resulting in a much lower molecular weight (MW), but also its concentration is reduced ten times. Here, we have investigated the structural changes of lipid-HA complexes as a function of HA concentration and MW to simulate the physiologically relevant conditions that exist in healthy and diseased joints. Small angle neutron scattering and dynamic light scattering were used to determine the structure of HA-lipid vesicles in bulk solution, while a combination of atomic force microscopy and quartz crystal microbalance was applied to study their assembly on a gold surface. We infer a significant influence of both MW and HA concentrations on the structure of HA-lipid complexes in bulk and assembled on a gold surface. Our results suggest that low MW HA cannot form an amorphous layer on the gold surface, which is expected to negatively impact the mechanical integrity and longevity of the boundary layer and could contribute to the increased wear of the cartilage that has been reported in joints diseased with OA.
Collapse
Affiliation(s)
- Kangdi Sun
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Tooba Shoaib
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Mark W Rutland
- KTH Royal Institute of Technology, Department of Chemistry, Stockholm SE-100 44, Sweden; School of Chemistry, University of New South Wales, Sydney 2052, Australia; Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Lyon 69130, France; and Bioeconomy and Health, Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm, Sweden
| | | | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Rosa M Espinosa-Marzal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
4
|
Paracini N, Gutfreund P, Welbourn R, Gonzalez-Martinez JF, Zhu K, Miao Y, Yepuri N, Darwish TA, Garvey C, Waldie S, Larsson J, Wolff M, Cárdenas M. Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3772-3780. [PMID: 36625710 PMCID: PMC9880997 DOI: 10.1021/acsami.2c18956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arrays of nanoparticle-supported lipid bilayers (nanoSLB) are lipid-coated nanopatterned interfaces that provide a platform to study curved model biological membranes using surface-sensitive techniques. We combined scattering techniques with direct imaging, to gain access to sub-nanometer scale structural information on stable nanoparticle monolayers assembled on silicon crystals in a noncovalent manner using a Langmuir-Schaefer deposition. The structure of supported lipid bilayers formed on the nanoparticle arrays via vesicle fusion was investigated using a combination of grazing incidence X-ray and neutron scattering techniques complemented by fluorescence microscopy imaging. Ordered nanoparticle assemblies were shown to be suitable and stable substrates for the formation of curved and fluid lipid bilayers that retained lateral mobility, as shown by fluorescence recovery after photobleaching and quartz crystal microbalance measurements. Neutron reflectometry revealed the formation of high-coverage lipid bilayers around the spherical particles together with a flat lipid bilayer on the substrate below the nanoparticles. The presence of coexisting flat and curved supported lipid bilayers on the same substrate, combined with the sub-nanometer accuracy and isotopic sensitivity of grazing incidence neutron scattering, provides a promising novel approach to investigate curvature-dependent membrane phenomena on supported lipid bilayers.
Collapse
Affiliation(s)
- Nicolò Paracini
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | | | - Rebecca Welbourn
- ISIS
Neutron & Muon Source, STFC, Rutherford
Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Juan Francisco Gonzalez-Martinez
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | - Kexin Zhu
- School
of Biological Sciences, Nanyang Technological
University, 639798Singapore
| | - Yansong Miao
- School
of Biological Sciences, Nanyang Technological
University, 639798Singapore
| | - Nageshwar Yepuri
- National
Deuteration Facility, Australian Nuclear
Science and Technology Organization (ANSTO), Lucas Heights, NSW2234, Australia
| | - Tamim A. Darwish
- National
Deuteration Facility, Australian Nuclear
Science and Technology Organization (ANSTO), Lucas Heights, NSW2234, Australia
| | - Christopher Garvey
- Heinz
Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstraβe 1, 85748Garching, Germany
| | - Sarah Waldie
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | - Johan Larsson
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | - Max Wolff
- Department
of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
| | - Marité Cárdenas
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
- School
of Biological Sciences, Nanyang Technological
University, 639798Singapore
| |
Collapse
|
5
|
Nele V, Holme MN, Rashid MH, Barriga HMG, Le TC, Thomas MR, Doutch JJ, Yarovsky I, Stevens MM. Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11909-11921. [PMID: 34581180 DOI: 10.1021/acs.langmuir.1c02076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol-lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Margaret N Holme
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M Harunur Rashid
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Mathematics and Physics, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- London Centre for Nanotechnology and Department of Biochemical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - James J Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, U.K
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
7
|
Maric S, Lind TK, Raida MR, Bengtsson E, Fredrikson GN, Rogers S, Moulin M, Haertlein M, Forsyth VT, Wenk MR, Pomorski TG, Arnebrant T, Lund R, Cárdenas M. Time-resolved small-angle neutron scattering as a probe for the dynamics of lipid exchange between human lipoproteins and naturally derived membranes. Sci Rep 2019; 9:7591. [PMID: 31110185 PMCID: PMC6527577 DOI: 10.1038/s41598-019-43713-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is the main killer in the western world. Today’s clinical markers include the total level of cholesterol and high-/low-density lipoproteins, which often fails to accurately predict the disease. The relationship between the lipid exchange capacity and lipoprotein structure should explain the extent by which they release or accept lipid cargo and should relate to the risk for developing atherosclerosis. Here, small-angle neutron scattering and tailored deuteration have been used to follow the molecular lipid exchange between human lipoprotein particles and cellular membrane mimics made of natural, “neutron invisible” phosphatidylcholines. We show that lipid exchange occurs via two different processes that include lipid transfer via collision and upon direct particle tethering to the membrane, and that high-density lipoprotein excels at exchanging the human-like unsaturated phosphatidylcholine. By mapping the specific lipid content and level of glycation/oxidation, the mode of action of specific lipoproteins can now be deciphered. This information can prove important for the development of improved diagnostic tools and in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Selma Maric
- Dept. of Biomedical Science, Malmö University, Per Albin Hanssons väg 35, 205 02, Malmö, Sweden.
| | - Tania Kjellerup Lind
- Dept. of Biomedical Science, Malmö University, Per Albin Hanssons väg 35, 205 02, Malmö, Sweden
| | - Manfred Roman Raida
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eva Bengtsson
- Dept. of Clinical Sciences, Lund University, Jan Waldenströms gata 35, CRC, Box 50332, 212 13, Malmö, Sweden
| | - Gunilla Nordin Fredrikson
- Dept. of Clinical Sciences, Lund University, Jan Waldenströms gata 35, CRC, Box 50332, 212 13, Malmö, Sweden
| | - Sarah Rogers
- ISIS Science and Technology Facilities Council, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| | - Martine Moulin
- Life Science Group, Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, F-38042, Grenoble, Cedex 9, France
| | - Michael Haertlein
- Life Science Group, Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, F-38042, Grenoble, Cedex 9, France
| | - V Trevor Forsyth
- Life Science Group, Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, F-38042, Grenoble, Cedex 9, France.,Faculty of Natural Science and Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Günther Pomorski
- Dept. of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,Dept. of Molecular Biochemistry, Ruhr University Bochum, Faculty of Chemistry and Biochemistry, 44780, Bochum, Germany
| | - Thomas Arnebrant
- Dept. of Biomedical Science, Malmö University, Per Albin Hanssons väg 35, 205 02, Malmö, Sweden
| | - Reidar Lund
- Dept. of Chemistry, University of Oslo, Blindern, 0315, Oslo, Norway
| | - Marité Cárdenas
- Dept. of Biomedical Science, Malmö University, Per Albin Hanssons väg 35, 205 02, Malmö, Sweden.
| |
Collapse
|
8
|
Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6064-6074. [PMID: 30977658 PMCID: PMC6506804 DOI: 10.1021/acs.langmuir.8b04256] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Liposomes are well-established systems for drug delivery and biosensing applications. The design of a liposomal carrier requires careful choice of lipid composition and formulation method. These determine many vesicle properties including lamellarity, which can have a strong effect on both encapsulation efficiency and the efflux rate of encapsulated active compounds. Despite this, a comprehensive study on how the lipid composition and formulation method affect vesicle lamellarity is still lacking. Here, we combine small-angle neutron scattering and cryogenic transmission electron microscopy to study the effect of three different well-established formulation methods followed by extrusion through 100 nm polycarbonate membranes on the resulting vesicle membrane structure. Specifically, we examine vesicles formulated from the commonly used phospholipids 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) via film hydration followed by (i) agitation on a shaker or (ii) freeze-thawing, or (iii) the reverse-phase evaporation vesicle method. After extrusion, up to half of the total lipid content is still assembled into multilamellar structures. However, we achieved unilamellar vesicle populations when as little as 0.1 mol % PEG-modified lipid was included in the vesicle formulation. Interestingly, DPPC with 5 mol % PEGylated lipid produces a combination of cylindrical micelles and vesicles. In conclusion, our results provide important insights into the effect of the formulation method and lipid composition on producing liposomes with a defined membrane structure.
Collapse
Affiliation(s)
- Valeria Nele
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Margaret N. Holme
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- E-mail: (M.N.H.)
| | - Ulrike Kauscher
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Michael R. Thomas
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - James J. Doutch
- ISIS
Neutron and Muon Source, STFC, Rutherford
Appleton Laboratory, Didcot OX11 ODE, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- E-mail: (M.M.S.)
| |
Collapse
|
9
|
Sugiura T, Takahashi C, Chuma Y, Fukuda M, Yamada M, Yoshida U, Nakao H, Ikeda K, Khan D, Nile AH, Bankaitis VA, Nakano M. Biophysical Parameters of the Sec14 Phospholipid Exchange Cycle. Biophys J 2018; 116:92-103. [PMID: 30580923 DOI: 10.1016/j.bpj.2018.11.3131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Sec14, the major yeast phosphatidylcholine (PC)/phosphatidylinositol (PI) transfer protein (PITP), coordinates PC and PI metabolism to facilitate an appropriate and essential lipid signaling environment for membrane trafficking from trans-Golgi membranes. The Sec14 PI/PC exchange cycle is essential for its essential biological activity, but fundamental aspects of how this PITP executes its lipid transfer cycle remain unknown. To address some of these outstanding issues, we applied time-resolved small-angle neutron scattering for the determination of protein-mediated intervesicular movement of deuterated and hydrogenated phospholipids in vitro. Quantitative analysis by small-angle neutron scattering revealed that Sec14 PI- and PC-exchange activities were sensitive to both the lipid composition and curvature of membranes. Moreover, we report that these two parameters regulate lipid exchange activity via distinct mechanisms. Increased membrane curvature promoted both membrane binding and lipid exchange properties of Sec14, indicating that this PITP preferentially acts on the membrane site with a convexly curved face. This biophysical property likely constitutes part of a mechanism by which spatial specificity of Sec14 function is determined in cells. Finally, wild-type Sec14, but not a mixture of Sec14 proteins specifically deficient in either PC- or PI-binding activity, was able to effect a net transfer of PI or PC down opposing concentration gradients in vitro.
Collapse
Affiliation(s)
- Taichi Sugiura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Chisato Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yusuke Chuma
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masakazu Fukuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Makiko Yamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ukyo Yoshida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Nakao
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Danish Khan
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Aaron H Nile
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, Texas
| | - Vytas A Bankaitis
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, Texas
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
10
|
Holme M, Rashid MH, Thomas MR, Barriga HMG, Herpoldt K, Heenan RK, Dreiss CA, Bañuelos JL, Xie HN, Yarovsky I, Stevens MM. Fate of Liposomes in the Presence of Phospholipase C and D: From Atomic to Supramolecular Lipid Arrangement. ACS CENTRAL SCIENCE 2018; 4:1023-1030. [PMID: 30159399 PMCID: PMC6107861 DOI: 10.1021/acscentsci.8b00286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Indexed: 05/04/2023]
Abstract
Understanding the origins of lipid membrane bilayer rearrangement in response to external stimuli is an essential component of cell biology and the bottom-up design of liposomes for biomedical applications. The enzymes phospholipase C and D (PLC and PLD) both cleave the phosphorus-oxygen bonds of phosphate esters in phosphatidylcholine (PC) lipids. The atomic position of this hydrolysis reaction has huge implications for the stability of PC-containing self-assembled structures, such as the cell wall and lipid-based vesicle drug delivery vectors. While PLC converts PC to diacylglycerol (DAG), the interaction of PC with PLD produces phosphatidic acid (PA). Here we present a combination of small-angle scattering data and all-atom molecular dynamics simulations, providing insights into the effects of atomic-scale reorganization on the supramolecular assembly of PC membrane bilayers upon enzyme-mediated incorporation of DAG or PA. We observed that PC liposomes completely disintegrate in the presence of PLC, as conversion of PC to DAG progresses. At lower concentrations, DAG molecules within fluid PC bilayers form hydrogen bonds with backbone carbonyl oxygens in neighboring PC molecules and burrow into the hydrophobic region. This leads initially to membrane thinning followed by a swelling of the lamellar phase with increased DAG. At higher DAG concentrations, localized membrane tension causes a change in lipid phase from lamellar to the hexagonal and micellar cubic phases. Molecular dynamics simulations show that this destabilization is also caused in part by the decreased ability of DAG-containing PC membranes to coordinate sodium ions. Conversely, PLD-treated PC liposomes remain stable up to extremely high conversions to PA. Here, the negatively charged PA headgroup attracts significant amounts of sodium ions from the bulk solution to the membrane surface, leading to a swelling of the coordinated water layer. These findings are a vital step toward a fundamental understanding of the degradation behavior of PC lipid membranes in the presence of these clinically relevant enzymes, and toward the rational design of diagnostic and drug delivery technologies for phospholipase-dysregulation-based diseases.
Collapse
Affiliation(s)
- Margaret
N. Holme
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M. Harunur Rashid
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Michael R. Thomas
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Karla−Luise Herpoldt
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard K. Heenan
- STFC ISIS
Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Cécile A. Dreiss
- School
of Cancer and Pharmaceutical Sciences, King’s
College London, London SE1 9NH, United Kingdom
| | - José Leobardo Bañuelos
- STFC ISIS
Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Hai-nan Xie
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- E-mail:
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- E-mail:
| |
Collapse
|
11
|
Lombardo D, Calandra P, Magazù S, Wanderlingh U, Barreca D, Pasqua L, Kiselev MA. Soft nanoparticles charge expression within lipid membranes: The case of amino terminated dendrimers in bilayers vesicles. Colloids Surf B Biointerfaces 2018; 170:609-616. [PMID: 29975909 DOI: 10.1016/j.colsurfb.2018.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 12/13/2022]
Abstract
Interactions of charged nanoparticles with model bio-membranes provide important insights about the soft interaction involved and the physico-chemical parameters that influence lipid bilayers stability, thus providing key features of their cytotoxicity effects onto cellular membranes. With this aim, the self-assembly processes between polyamidoamine dendrimers (generation G = 2.0 and G = 4.0) and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, x-rays, Raman and quasielastic light scattering experiments. Raman scattering data evidenced that dendrimers penetration produce a perturbation of the DPPC vesicles alkyl chains. A linear increase of liposome zeta-potential with increasing PAMAM concentration evidenced that only a fraction of the dendrimers effective charge contributes to the expression of the charge at the surface of the DPPC liposome. The linear region of the zeta-potential extends toward higher PAMAM concentrations as the dendrimer generation decreases from G = 4.0 to G = 2.0. Further increase in PAMAM concentration, outside of the linear region, causes a perturbation of the bilayer characterized by the loss in multilamellar correlation and the increase of DPPC liposome hydrodynamic radius. The findings of our investigation help to rationalize the effect of nanoparticles electrostatic interaction within lipid vesicles as well as to provide important insights about the perturbation of lipid bilayers membrane induced by nanoparticles inclusion.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy.
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy
| | - Salvatore Magazù
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, 98166 Messina, Italy
| | - Ulderico Wanderlingh
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, 98166 Messina, Italy
| | - Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, 98166 Messina, Italy
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow 141980, Russia
| |
Collapse
|
12
|
Lombardo D, Calandra P, Bellocco E, Laganà G, Barreca D, Magazù S, Wanderlingh U, Kiselev MA. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2769-2777. [PMID: 27521487 DOI: 10.1016/j.bbamem.2016.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 12/25/2022]
Abstract
In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO- Na+) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Viale F. S. D'Alcontres 37, 98158 Messina, Italy.
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km 29.300, Monterotondo Stazione, 00015 Roma, Italy
| | - Ersilia Bellocco
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Laganà
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy; LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans & Tours; and CBM (CNRS), rue Charles Sandron, 45071 Orléans, France
| | - Ulderico Wanderlingh
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Ulica Joliot-Curie 6, Dubna, Moscow 141980, Russia
| |
Collapse
|
13
|
Kel O, Tamimi A, Fayer MD. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy. J Phys Chem B 2014; 119:8852-62. [DOI: 10.1021/jp503940k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oksana Kel
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
14
|
Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes. Proc Natl Acad Sci U S A 2014; 111:918-23. [PMID: 24395796 DOI: 10.1073/pnas.1323110111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrafast structural dynamics inside the bilayers of dilauroylphosphatidylcholine (DLPC) and dipalmitoylphosphatidylcholine vesicles with 70, 90, and 125 nm diameters were directly measured with 2D IR vibrational echo spectroscopy. The antisymmetric CO stretch of tungsten hexacarbonyl was used as a vibrational probe and provided information on spectral diffusion (structural dynamics) in the alkyl region of the bilayers. Although the CO stretch absorption spectra remain the same, the interior structural dynamics become faster as the size of the vesicles decrease, with the size dependence greater for dipalmitoylphosphatidylcholine than for DLPC. As DLPC vesicles become larger, the interior dynamics approach those of the planar bilayer.
Collapse
|
15
|
Pfeiffer H, Weichert H, Klose G, Heremans K. Hydration behaviour of POPC/C12-Bet mixtures investigated by sorption gravimetry, 31P NMR spectroscopy and X-ray diffraction. Chem Phys Lipids 2012; 165:244-51. [DOI: 10.1016/j.chemphyslip.2012.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
16
|
Date AA, Srivastava D, Nagarsenker MS, Mulherkar R, Panicker L, Aswal V, Hassan PA, Steiniger F, Thamm J, Fahr A. Lecithin-based novel cationic nanocarriers (LeciPlex) I: fabrication, characterization and evaluation. Nanomedicine (Lond) 2011; 6:1309-25. [DOI: 10.2217/nnm.11.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P®) and diethyleneglycol monoethyl ether (Transcutol®) was established. Materials & Methods: The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis. Results: Transmission electron microscopy analysis could not reveal sufficient information regarding the internal structure of the nanocarriers, whereas cryotransmission electron microscopy studies indicated that these novel nanocarriers have unilamellar structure. Small-angle neutron scattering studies confirmed interaction of cationic surfactant (DDAB) and lecithin in the nanocarriers and confirmed the presence of unilamellar nanostructures. Conclusion: Various hydrophobic drugs could be encapsulated in the CTAB/DDAB-based lecithin nanocarriers (CTAB–LeciPlex or DDAB–LeciPlex) irrespective of their difference in log p-values. In vitro antimicrobial studies on triclosan-loaded LeciPlex confirmed entrapment of triclosan in the nanocarriers. The ability of CTAB–LeciPlex and DDAB–LeciPlex to condense plasmid DNA was established using agarose gel electrophoresis. DDAB–LeciPlex could successfully transfect pDNA in HEK-293 cells indicating potential in gene delivery. Original submitted: 20/8/2010; Revised submitted: 14/12/2010
Collapse
Affiliation(s)
- Abhijit A Date
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai-400098, India
| | - Deepika Srivastava
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai-410210, India
| | | | - Rita Mulherkar
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai-410210, India
| | - Lata Panicker
- Bhabha Atomic Research Center (BARC), Mumbai 400 085, India
| | - Vinod Aswal
- Bhabha Atomic Research Center (BARC), Mumbai 400 085, India
| | | | | | - Jana Thamm
- Friedrich-Schiller-University Jena, Germany
| | | |
Collapse
|
17
|
Foglia F, Drake A, Terry A, Rogers S, Lawrence M, Barlow D. Small-angle neutron scattering studies of the effects of amphotericin B on phospholipid and phospholipid–sterol membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1574-80. [DOI: 10.1016/j.bbamem.2011.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/18/2011] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
|
18
|
Turbidity Spectroscopy for Characterization of Submicroscopic Drug Carriers, Such as Nanoparticles and Lipid Vesicles: Size Determination. Pharm Res 2011; 28:2204-22. [DOI: 10.1007/s11095-011-0448-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
19
|
Heider EC, Barhoum M, Edwards K, Gericke KH, Harris JM. Structural Characterization of Individual Vesicles using Fluorescence Microscopy. Anal Chem 2011; 83:4909-15. [DOI: 10.1021/ac200632h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Emily C. Heider
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Moussa Barhoum
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Kyle Edwards
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Karl-Heinz Gericke
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
20
|
Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA, Aswal V, Steiniger F, Thamm J, Fahr A. Lecithin-Based Novel Cationic Nanocarriers (Leciplex) II: Improving Therapeutic Efficacy of Quercetin on Oral Administration. Mol Pharm 2011; 8:716-26. [DOI: 10.1021/mp100305h] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Abhijit A. Date
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai-400098, India
| | - Mangal S. Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai-400098, India
| | - Shilpa Patere
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai-400098, India
| | - Vivek Dhawan
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai-400098, India
| | - R. P. Gude
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai-410210, India
| | - P. A. Hassan
- Bhabha Atomic Research Center, Mumbai 400 085, India
| | - V. Aswal
- Bhabha Atomic Research Center, Mumbai 400 085, India
| | - Frank Steiniger
- Center for Electron Microscopy of the Medical Faculty, Friedrich-Schiller-University Jena, Ziegelmühlenweg 1, D-07740 Jena, Germany
| | - Jana Thamm
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstr. 8, D-07743 Jena, Germany
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstr. 8, D-07743 Jena, Germany
| |
Collapse
|
21
|
Use of small angle neutron scattering to study the interaction of angiotensin II with model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:687-98. [DOI: 10.1007/s00249-011-0675-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/30/2010] [Accepted: 01/06/2011] [Indexed: 01/17/2023]
|
22
|
Elsayed MMA, Cevc G. The vesicle-to-micelle transformation of phospholipid-cholate mixed aggregates: a state of the art analysis including membrane curvature effects. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:140-53. [PMID: 20832388 DOI: 10.1016/j.bbamem.2010.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
We revisited the vesicle-to-micelle transformation in phosphatidylcholine-cholate mixtures paying special attention to the lipid bilayer curvature effects. For this purpose, we prepared unilamellar vesicles with different starting sizes (2r(v)=45-120nm). We then studied mixtures of the unilamellar vesicles (1-8mmol kg(-1)) and sodium cholate (0-11.75mmolkg(-1)) by static and dynamic light scattering. The transformation generally comprises at least two, largely parallel phenomena; one increases and the other decreases the average mixed aggregate size. In our view, cholate first induces bilayer fluctuations that lead to vesicle asphericity, and then to lipid bilayer poration followed by sealing/reformation (or fusion). The cholate-containing mixed bilayers, whether in vesicular or open form, project thread-like protrusions with surfactant enriched ends even before complete bilayer solubilisation. Increasing cholate concentration promotes detachment of such protrusions (i.e. mixed micelles formation), in parallel to further softening/destabilising of mixed amphipat bilayers over a broad range of concentrations. Vesicles ultimately fragment into mixed thread-like micelles. Higher cholate relative concentrations yield shorter thread-like mixed micelles. Most noteworthy, the cholate-induced bilayer fluctuations, the propensity for large aggregate formation, the transformation kinetics, and the cholate concentration ensuring complete lipid solubilisation all depend on the starting mean vesicle size. The smallest tested vesicles (2r(v)=45nm), with the highest bilayer curvature, require ~30% less cholate for complete solubilisation than the largest tested vesicles (2r(v)=120nm).
Collapse
|
23
|
Pfeiffer H, Klose G, Heremans K. Thermodynamic and structural behaviour of equimolar POPC/CnE4 (n=8, 12, 16) mixtures by sorption gravimetry, 2H NMR spectroscopy and X-ray diffraction. Chem Phys Lipids 2010; 163:318-28. [PMID: 20060820 DOI: 10.1016/j.chemphyslip.2009.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/02/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
The hydration behaviour of equimolar mixtures of phospholipids and nonionic surfactants with different chain length was investigated by gravimetric sorption, NMR spectroscopy and X-ray diffraction. At the most hydration degrees investigated, the incorporation of nonionic surfactants in a phospholipid bilayer leads to an increase of the hydrophilicity, which can be shown by the presence of excess hydration. The increased hydrophilicity could be explained by the excavation of additional water binding sites due to the "dilution" of the dipole field of the phospholipid bilayer. Another related contribution arises from the increase of the accessible surface area due to the increase of gauche conformers that result from the steric mismatch when surfactants are incorporated into the phospholipid matrix. (2)H NMR spectroscopy was used to determine the quadrupolar splitting representing a measure of the order state of water. The swelling behaviour could be assessed by small-angle X-ray diffraction. (31)P NMR spectroscopy was applied for the assignment of phase structures to the respective hydration range.
Collapse
Affiliation(s)
- H Pfeiffer
- Katholieke Universiteit Leuven, Department of Metallurgy and Materials Engineering, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
24
|
Ristori S, Di Cola E, Lunghi C, Richichi B, Nativi C. Structural study of liposomes loaded with a GM3 lactone analogue for the targeting of tumor epitopes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2518-25. [DOI: 10.1016/j.bbamem.2009.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/10/2009] [Accepted: 10/07/2009] [Indexed: 11/16/2022]
|
25
|
Kiselev M, Zemlyanaya E, Ryabova N, Hauss T, Dante S, Lombardo D. Water distribution function across the curved lipid bilayer: SANS study. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.09.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
The influence of curvature on membrane domains. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:665-71. [PMID: 18369611 DOI: 10.1007/s00249-008-0304-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 02/26/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
An interdependence between local curvature and domain formation has been observed in both cell and model membranes. An implication of this observation is that domain formation in model membranes may be modulated by membrane curvature. In this paper, small-angle neutron scattering (SANS) is used to examine the influence of membrane curvature (i.e., vesicle size) on the formation of membrane domains. It is found that, although vesicle size and polydispersity are not significantly altered by the formation of membrane domains, the area fraction occupied by domains depends on the overall vesicle size. In particular, increasing membrane curvature (i.e., decreasing vesicle size) results in increased area fractions of membrane domains.
Collapse
|
27
|
Dante S, Hauß T, Brandt A, Dencher NA. Membrane Fusogenic Activity of the Alzheimer's Peptide Aβ(1–42) Demonstrated by Small-Angle Neutron Scattering. J Mol Biol 2008; 376:393-404. [DOI: 10.1016/j.jmb.2007.11.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/25/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
28
|
Kučerka N, Pencer J, Sachs JN, Nagle JF, Katsaras J. Curvature effect on the structure of phospholipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1292-9. [PMID: 17241048 PMCID: PMC2720570 DOI: 10.1021/la062455t] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
High-resolution small-angle X-ray scattering (SAXS), complemented by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments, was used to study the effect of curvature on the bilayer structure of dioleoyl-phosphatidylcholine (DOPC) and dioleoyl-phosphatidylserine (DOPS) unilamellar vesicles (ULVs). Bilayer curvature, as a result of finite vesicle size, was varied as a function of vesicle radius and determined by DLS and SANS measurements. Unilamellarity of large DOPC ULVs was achieved by the addition of small amounts (up to 4 mol %) of the charged lipid, DOPS. A comparison of SANS data over the range of 0.02 < q <0.2 A-1 indicated no change in the overall bilayer thickness as a function of ULV diameter (620 to 1840 A). SANS data were corroborated by high-resolution (0.06 < q <0.6 A-1) SAXS data for the same diameter ULVs and data obtained from planar samples of aligned bilayers. Both the inner and outer leaflets of the bilayer were found to be indistinguishable. This observation agrees well with simple geometric models describing the effect of vesicle curvature. However, 1220-A-diameter pure DOPS ULVs form asymmetric bilayers whose structure can most likely be rationalized in terms of geometrical constraints coupled with electrostatic interactions, rather than curvature alone.
Collapse
|
29
|
Pfeiffer H, Klose G, Heremans K, Glorieux C. Thermotropic phase behaviour of the pseudobinary mixtures of DPPC/C12E5 and DMPC/C12E5 determined by differential scanning calorimetry and ultrasonic velocimetry. Chem Phys Lipids 2006; 139:54-67. [PMID: 16293237 DOI: 10.1016/j.chemphyslip.2005.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/25/2005] [Accepted: 10/04/2005] [Indexed: 11/22/2022]
Abstract
The present paper reports on the phase behaviour of the pseudobinary aqueous mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/pentaethylene glycol monododecyl ether (C12E5) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine monohydrate (DMPC)/C12E5. Both systems exhibit a variety of mesophases, such as lamellar gel, liquid crystalline and micellar phases. The phase diagrams show peritectic and eutectic behaviours. The existence of a compound complex is established. From the phase diagrams, the temperature dependence of the solubilisation parameters is obtained. The phase diagrams, especially with respect to the solubilisation process were qualitatively explained assuming that the packing of the constituents plays a dominating role. Finally, differential scanning calorimetry and ultrasonic velocimetry are compared concerning their potentials to determine characteristics of phase transitions in pseudobinary phospholipid/surfactant mixtures.
Collapse
Affiliation(s)
- H Pfeiffer
- Department of Physics and Astronomy, Acoustics and Thermal Physics Section, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|