1
|
Ng TB, Cheung RCF, Wong JH, Chan YS, Dan X, Pan W, Wang H, Guan S, Chan K, Ye X, Liu F, Xia L, Chan WY. Fungal proteinaceous compounds with multiple biological activities. Appl Microbiol Biotechnol 2016; 100:6601-6617. [PMID: 27338574 DOI: 10.1007/s00253-016-7671-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yau Sang Chan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, People's Republic of China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, People's Republic of China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Gallego-García A, Mirassou Y, García-Moreno D, Elías-Arnanz M, Jiménez MA, Padmanabhan S. Structural insights into RNA polymerase recognition and essential function of Myxococcus xanthus CdnL. PLoS One 2014; 9:e108946. [PMID: 25272012 PMCID: PMC4182748 DOI: 10.1371/journal.pone.0108946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
CdnL and CarD are two functionally distinct members of the CarD_CdnL_TRCF family of bacterial RNA polymerase (RNAP)-interacting proteins, which co-exist in Myxococcus xanthus. While CarD, found exclusively in myxobacteria, has been implicated in the activity of various extracytoplasmic function (ECF) σ-factors, the function and mode of action of the essential CdnL, whose homologs are widespread among bacteria, remain to be elucidated in M. xanthus. Here, we report the NMR solution structure of CdnL and present a structure-based mutational analysis of its function. An N-terminal five-stranded β-sheet Tudor-like module in the two-domain CdnL mediates binding to RNAP-β, and mutations that disrupt this interaction impair cell growth. The compact CdnL C-terminal domain consists of five α-helices folded as in some tetratricopeptide repeat-like protein-protein interaction domains, and contains a patch of solvent-exposed nonpolar and basic residues, among which a set of basic residues is shown to be crucial for CdnL function. We show that CdnL, but not its loss-of-function mutants, stabilizes formation of transcriptionally competent, open complexes by the primary σA-RNAP holoenzyme at an rRNA promoter in vitro. Consistent with this, CdnL is present at rRNA promoters in vivo. Implication of CdnL in RNAP-σA activity and of CarD in ECF-σ function in M. xanthus exemplifies how two related members within a widespread bacterial protein family have evolved to enable distinct σ-dependent promoter activity.
Collapse
Affiliation(s)
- Aránzazu Gallego-García
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Yasmina Mirassou
- Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Madrid, Spain
| | - Diana García-Moreno
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
- * E-mail: (MEA); (MAJ); (SP)
| | - María Angeles Jiménez
- Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Madrid, Spain
- * E-mail: (MEA); (MAJ); (SP)
| | - S. Padmanabhan
- Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Madrid, Spain
- * E-mail: (MEA); (MAJ); (SP)
| |
Collapse
|
3
|
Álvarez-García E, Diago-Navarro E, Herrero-Galán E, García-Ortega L, López-Villarejo J, Olmo N, Díaz-Orejas R, Gavilanes JG, Martínez-del-Pozo Á. The ribonucleolytic activity of the ribotoxin α-sarcin is not essential for in vitro protein biosynthesis inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1377-82. [DOI: 10.1016/j.bbapap.2011.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022]
|
4
|
Álvarez-García E, Martínez-del-Pozo Á, Gavilanes JG. Role of the basic character of α-sarcin’s NH2-terminal β-hairpin in ribosome recognition and phospholipid interaction. Arch Biochem Biophys 2009; 481:37-44. [DOI: 10.1016/j.abb.2008.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 11/17/2022]
|
5
|
León E, Yee A, Ortíz AR, Santoro J, Rico M, Jiménez MA. Solution structure of the hypothetical protein TA0095 from Thermoplasma acidophilum: a novel superfamily with a two-layer sandwich architecture. Protein Sci 2007; 16:2278-86. [PMID: 17766377 PMCID: PMC2204122 DOI: 10.1110/ps.072869607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/01/2007] [Accepted: 06/24/2007] [Indexed: 10/22/2022]
Abstract
TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an alpha/beta two-layer sandwich architecture formed by three alpha-helices and five beta-strands following the order beta1-alpha1-beta2-beta3-beta4-beta5-alpha2-alpha3. Searches for structural homologs indicate that the TA0095 structure belongs to the TBP-like fold, constituting a novel superfamily characterized by an additional C-terminal helix. The TA0095 structure provides a fold common to the COG4004 proteins that will obviously belong to this new superfamily. Most hydrophobic residues conserved in the COG4004 proteins are buried in the structure determined herein, thus underlying their importance for structure stability. Considering that the TA0095 surface shows a large positively charged patch with a high degree of residue conservation within the COG4004 domain, the biological function of TA0095 and the rest of COG4004 proteins might occur through binding a negatively charged molecule. Like other TBP-like fold proteins, the COG4004 proteins might be DNA-binding proteins. The fact that TA0095 is shown to interact with large DNA fragments is in favor of this hypothesis, although nonspecific DNA binding cannot be ruled out.
Collapse
Affiliation(s)
- Esther León
- Instituto de Química Física Rocasolano, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Lacadena J, Alvarez-García E, Carreras-Sangrà N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez del Pozo A. Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 2007; 31:212-37. [PMID: 17253975 DOI: 10.1111/j.1574-6976.2006.00063.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tishchenko EV, Sobol' AG, Krachkovskiĭ SA, Vasil'eva LI, Nol'de SB, Shul'ga AA, Kirpichnikov MP, Arsen'ev AS. Residual dipolar couplings and molecular dynamic calculations as a source for refinement of protein spatial structures. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 32:589-602. [PMID: 17180909 DOI: 10.1134/s1068162006060057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The precision of techniques and factors affecting the interpretation of residual dipolar couplings (RDCs) in analysis of spatial structures of partially aligned proteins are discussed. Experimental RDC values were obtained for pairs of 1H-15N nuclei of the protein barstar partially aligned in a liquid crystalline matrix of bicelles composed of dimiristoylphosphatidylcholine and dihexanoylphosphatidylcholine. The observed couplings agree well with the spatial structures of barstar determined earlier by X-ray and NMR methods. However, the differences between the experimental and calculated RDCs that were calculated on the basis of the known spatial structures of barstar, exceed the experimental errors three- to fourfold. These discrepancies can be explained by differences in the protein structures in solution and in crystal, a limited precision of the X-ray analysis, and the intramolecular mobility of the protein molecule. A comparison of the results of modeling of the molecular dynamics of barstar in solution, crystal structures, and the experimental RDCs showed that the methods of molecular dynamics provide for a reasonable description of the character and amplitudes of internal motions and they should be considered for the correct determination of protein spatial structures from NMR spectroscopic data.
Collapse
|