1
|
Li C, Jia Z, Chakravorty A, Pahari S, Peng Y, Basu S, Koirala M, Panday SK, Petukh M, Li L, Alexov E. DelPhi Suite: New Developments and Review of Functionalities. J Comput Chem 2019; 40:2502-2508. [PMID: 31237360 PMCID: PMC6771749 DOI: 10.1002/jcc.26006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 06/09/2019] [Indexed: 12/25/2022]
Abstract
Electrostatic potential, energies, and forces affect virtually any process in molecular biology, however, computing these quantities is a difficult task due to irregularly shaped macromolecules and the presence of water. Here, we report a new edition of the popular software package DelPhi along with describing its functionalities. The new DelPhi is a C++ object-oriented package supporting various levels of multiprocessing and memory distribution. It is demonstrated that multiprocessing results in significant improvement of computational time. Furthermore, for computations requiring large grid size (large macromolecular assemblages), the approach of memory distribution is shown to reduce the requirement of RAM and thus permitting large-scale modeling to be done on Linux clusters with moderate architecture. The new release comes with new features, whose functionalities and applications are described as well. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chuan Li
- Department of MathematicsWest Chester University of PennsylvaniaWest ChesterPennsylvania19383
| | - Zhe Jia
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| | - Arghya Chakravorty
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| | - Swagata Pahari
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| | - Yunhui Peng
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| | - Sankar Basu
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| | - Mahesh Koirala
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| | | | - Marharyta Petukh
- Department of BiologyPresbyterian CollegeClintonSouth Carolina29325
| | - Lin Li
- Department of PhysicsUniversity of Texas at EI PasoTexas79968
| | - Emil Alexov
- Department of Physics and AstronomyClemson UniversityClemsonSouth Carolina29634
| |
Collapse
|
2
|
Tajielyato N, Alexov E. Modeling pKas of unfolded proteins to probe structural models of unfolded state. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modeling unfolded states of proteins has implications for protein folding and stability. Since in unfolded state proteins adopt multiple conformations, any experimentally measured quantity is ensemble averaged, therefore the computed quantity should be ensemble averaged as well. Here, we investigate the possibility that one can model an unfolded state ensemble with the coil model approach, algorithm such as “flexible-meccano” [Ozenne V et al., Flexible-meccano: A tool for the generation of explicit ensemle descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics 28:1463–1470, 2012], developed to generate structures for intrinsically disordered proteins. We probe such a possibility by using generated structures to calculate pKas of titratable groups and compare with experimental data. It is demonstrated that even with a small number of representative structures of unfolded state, the average calculated pKas are in very good agreement with experimentally measured pKas. Also, predictions are made for titratable groups for which there is no experimental data available. This suggests that the coil model approach is suitable for generating 3D structures of unfolded state of proteins. To make the approach suitable for large-scale modeling, which requires limited number of structures, we ranked the structures according to their solvent accessible surface area (SASA). It is shown that in the majority of cases, the top structures with smallest SASA are enough to represent unfolded state.
Collapse
Affiliation(s)
- Nayere Tajielyato
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29630, USA
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29630, USA
| |
Collapse
|
3
|
Li L, Jia Z, Peng Y, Chakravorty A, Sun L, Alexov E. DelPhiForce web server: electrostatic forces and energy calculations and visualization. Bioinformatics 2018; 33:3661-3663. [PMID: 29036596 DOI: 10.1093/bioinformatics/btx495] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Summary Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. Availability and implementation The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. Contact delphi@clemson.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lin Li
- Department of Physics, Clemson University, Clemson, SC 29631, USA
| | - Zhe Jia
- Department of Physics, Clemson University, Clemson, SC 29631, USA
| | - Yunhui Peng
- Department of Physics, Clemson University, Clemson, SC 29631, USA
| | | | - Lexuan Sun
- Department of Physics, Clemson University, Clemson, SC 29631, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
4
|
Designing molecular dynamics simulations to shift populations of the conformational states of calmodulin. PLoS Comput Biol 2013; 9:e1003366. [PMID: 24339763 PMCID: PMC3854495 DOI: 10.1371/journal.pcbi.1003366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
We elucidate the mechanisms that lead to population shifts in the conformational states of calcium-loaded calmodulin (Ca2+-CaM). We design extensive molecular dynamics simulations to classify the effects that are responsible for adopting occupied conformations available in the ensemble of NMR structures. Electrostatic interactions amongst the different regions of the protein and with its vicinal water are herein mediated by lowering the ionic strength or the pH. Amino acid E31, which is one of the few charged residues whose ionization state is highly sensitive to pH differences in the physiological range, proves to be distinctive in its control of population shifts. E31A mutation at low ionic strength results in a distinct change from an extended to a compact Ca2+-CaM conformation within tens of nanoseconds, that otherwise occur on the time scales of microseconds. The kinked linker found in this particular compact form is observed in many of the target-bound forms of Ca2+-CaM, increasing the binding affinity. This mutation is unique in controlling C-lobe dynamics by affecting the fluctuations between the EF-hand motif helices. We also monitor the effect of the ionic strength on the conformational multiplicity of Ca2+-CaM. By lowering the ionic strength, the tendency of nonspecific anions in water to accumulate near the protein surface increases, especially in the vicinity of the linker. The change in the distribution of ions in the vicinal layer of water allows N- and C- lobes to span a wide variety of relative orientations that are otherwise not observed at physiological ionic strength. E31 protonation restores the conformations associated with physiological environmental conditions even at low ionic strength. Calmodulin (CaM) is involved in calcium signaling pathways in eukaryotic cells as an intracellular Ca2+ receptor. Exploiting pH differences in the cell, CaM performs a variety of functions by conveniently adopting different conformational states. We aim to reveal pH and ionic strength (IS) dependent shifts in the populations of conformational substates by modulating electrostatic interactions amongst the different regions of the protein and with its vicinal water. For this purpose, we design extensive molecular dynamics simulations to classify the effects that are responsible for adopting different conformations exhibited in the ensemble of NMR structures reported. Lowering the IS or pH, CaM experiences higher inter-lobe orientational flexibility caused by extreme change in the non-specific ion distribution in the vicinal solvent. Amongst the titratable groups sensitive to pH variations, E31 is unique in that its protonation has the same effect on the vicinal layer as increasing the IS. Furthermore, E31A mutation causes a large, reversible conformational change compatible with NMR ensemble structures populating the linker-kinked conformations. The mutation in the N lobe, at a significant distance, both modulates the electrostatic interactions in the central linker and alters the EF-hand helix orientations in the C lobe.
Collapse
|
5
|
Noshiro D, Sonomura K, Yu HH, Imanishi M, Asami K, Futaki S. Construction of a Ca(2+)-gated artificial channel by fusing alamethicin with a calmodulin-derived extramembrane segment. Bioconjug Chem 2013; 24:188-95. [PMID: 23272973 DOI: 10.1021/bc300468x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using native chemical ligation, we constructed a Ca(2+)-gated fusion channel protein consisting of alamethicin and the C-terminal domain of calmodulin. At pH 5.4 and in the absence of Ca(2+), this fusion protein yielded a burst-like channel current with no discrete channel conductance levels. However, Ca(2+) significantly lengthened the specific channel open state and increased the mean channel current, while Mg(2+) produced no significant changes in the channel current. On the basis of 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescent measurement, Ca(2+)-stimulated gating may be related to an increased surface hydrophobicity of the extramembrane segment of the fusion protein.
Collapse
Affiliation(s)
- Daisuke Noshiro
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Wang L, Witham S, Zhang Z, Li L, Hodsdon ME, Alexov E. In silico investigation of pH-dependence of prolactin and human growth hormone binding to human prolactin receptor. COMMUNICATIONS IN COMPUTATIONAL PHYSICS 2013; 13:207-222. [PMID: 24683423 PMCID: PMC3966486 DOI: 10.4208/cicp.170911.131011s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Experimental data shows that the binding of human prolactin (hPRL) to human prolactin receptor (hPRLr-ECD) is strongly pH-dependent, while the binding of the same receptor to human growth hormone (hGH) is pH-independent. Here we carry in silico analysis of the molecular effects causing such a difference and reveal the role of individual amino acids. It is shown that the computational modeling correctly predicts experimentally determined pKa's of histidine residues in an unbound state in the majority of the cases and the pH-dependence of the binding free energy. Structural analysis carried in conjunction with calculated pH-dependence of the binding revealed that the main reason for pH-dependence of the binding of hPRL-hPRLr-ECD is a number of salt- bridges across the interface of the complex, while no salt-bridges are formed in the hGH-hPRlr-ECD. Specifically, most of the salt-bridges involve histidine residues and this is the reason for the pH-dependence across a physiological range of pH. The analysis not only revealed the molecular mechanism of the pH-dependence of the hPRL-hPRLr-ECD, but also provided critical insight into the underlying physic-chemical mechanism.
Collapse
Affiliation(s)
- Lin Wang
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Shawn Witham
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Zhe Zhang
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Lin Li
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| | - Michael E. Hodsdon
- Department of Laboratory Medicine and the Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| |
Collapse
|
7
|
Atilgan AR, Aykut AO, Atilgan C. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin. J Chem Phys 2011; 135:155102. [DOI: 10.1063/1.3651807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Abstract
The role of electrostatics in protein-protein interactions and binding is reviewed in this paper. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and the basic electrostatic effects occurring upon the formation of the complex are discussed. The effect of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated which indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartments. The similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity.
Collapse
Affiliation(s)
| | | | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634
| |
Collapse
|
9
|
Maniccia AW, Yang W, Johnson JA, Li S, Tjong H, Zhou HX, Shaket LA, Yang JJ. Inverse tuning of metal binding affinity and protein stability by altering charged coordination residues in designed calcium binding proteins. PMC BIOPHYSICS 2009; 2:11. [PMID: 20025729 PMCID: PMC2816670 DOI: 10.1186/1757-5036-2-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/21/2009] [Indexed: 11/10/2022]
Abstract
Ca(2+ )binding proteins are essential for regulating the role of Ca(2+ )in cell signaling and maintaining Ca(2+ )homeostasis. Negatively charged residues such as Asp and Glu are often found in Ca(2+ )binding proteins and are known to influence Ca(2+ )binding affinity and protein stability. In this paper, we report a systematic investigation of the role of local charge number and type of coordination residues in Ca(2+ )binding and protein stability using de novo designed Ca(2+ )binding proteins. The approach of de novo design was chosen to avoid the complications of cooperative binding and Ca(2+)-induced conformational change associated with natural proteins. We show that when the number of negatively charged coordination residues increased from 2 to 5 in a relatively restricted Ca(2+)-binding site, Ca(2+ )binding affinities increased by more than 3 orders of magnitude and metal selectivity for trivalent Ln(3+ )over divalent Ca(2+ )increased by more than 100-fold. Additionally, the thermal transition temperatures of the apo forms of the designed proteins decreased due to charge repulsion at the Ca(2+ )binding pocket. The thermal stability of the proteins was regained upon Ca(2+ )and Ln(3+ )binding to the designed Ca(2+ )binding pocket. We therefore observe a striking tradeoff between Ca(2+)/Ln(3+ )affinity and protein stability when the net charge of the coordination residues is varied. Our study has strong implications for understanding and predicting Ca(2+)-conferred thermal stabilization of natural Ca(2+ )binding proteins as well as for designing novel metalloproteins with tunable Ca(2+ )and Ln(3+ )binding affinity and selectivity.PACS codes: 05.10.-a.
Collapse
Affiliation(s)
- Anna Wilkins Maniccia
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Yang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Road 5625, Changchun, Jilin 130022, PR China
| | - Julian A Johnson
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Shunyi Li
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Harianto Tjong
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Lev A Shaket
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|