1
|
Fukazawa M, Miyake K, Hoshino H, Fushimi K, Narikawa R. Phycocyanobilin Binding and Specific Amino Acid Residues Near The Chromophore Contribute To Orange Light Perception By The Dualchrome Phytochrome Region. PLANT & CELL PHYSIOLOGY 2025; 66:193-203. [PMID: 38985655 PMCID: PMC11879098 DOI: 10.1093/pcp/pcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
A novel photoreceptor dualchrome 1 (DUC1), containing a fused structure of cryptochrome and phytochrome, was discovered in the marine green alga Pycnococcus provasolli. The DUC1 phytochrome region (PpDUC1-N) binds to the bilin (linear tetrapyrrole) chromophores, phytochromobilin (PΦB) or phycocyanobilin (PCB), and reversibly photoconverts between the orange-absorbing dark-adapted state and the far-red-absorbing photoproduct state. This contrasts with typical phytochromes, which photoconvert between the red-absorbing dark-adapted and far-red-absorbing photoproduct states. In this study, we examined the molecular mechanism of PpDUC1-N to sense orange light by identifying the chromophore species synthesized by P. provasolli and the amino acid residues within the PpDUC1-N responsible for sensing orange light in the dark-adapted state. We focused on the PcyA homolog of P. provasolli (PpPcyA). Coexpression with the photoreceptors followed by an enzymatic assay revealed that PpPcyA synthesized PCB. Next, we focused on the PpDUC1-N GAF domain responsible for chromophore binding and light sensing. Ten amino acid residues were selected as the mutagenesis target near the chromophore. Replacement of these residues with those conserved in typical phytochromes revealed that three mutations (F290Y/M304S/L353M) resulted in a 23-nm red shift in the dark-adapted state. Finally, we combined these constructs to obtain the PΦB-binding F290Y/M304S/L353M mutant and a 38-nm red shift was observed compared with the PCB-binding wild-type PpDUC1. The binding chromophore species and the key residues near the chromophore contribute to blue-shifted orange light sensing in the dark-adapted state of the PpDUC1-N.
Collapse
Affiliation(s)
- Mana Fukazawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Keita Miyake
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hiroki Hoshino
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Keiji Fushimi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Rei Narikawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Rockwell NC, Lagarias JC. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. J Mol Biol 2024; 436:168313. [PMID: 37839679 PMCID: PMC11218821 DOI: 10.1016/j.jmb.2023.168313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The phytochrome superfamily comprises three groups of photoreceptors sharing a conserved GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) domain that uses a covalently attached linear tetrapyrrole (bilin) chromophore to sense light. Knotted red/far-red phytochromes are widespread in both bacteria and eukaryotes, but cyanobacteria also contain knotless red/far-red phytochromes and cyanobacteriochromes (CBCRs). Unlike typical phytochromes, CBCRs require only the GAF domain for bilin binding, chromophore ligation, and full, reversible photoconversion. CBCRs can sense a wide range of wavelengths (ca. 330-750 nm) and can regulate phototaxis, second messenger metabolism, and optimization of the cyanobacterial light-harvesting apparatus. However, the origins of CBCRs are not well understood: we do not know when or why CBCRs evolved, or what selective advantages led to retention of early CBCRs in cyanobacterial genomes. In the current work, we use the increasing availability of genomes and metagenome-assembled-genomes from early-branching cyanobacteria to explore the origins of CBCRs. We reaffirm the earliest branches in CBCR evolution. We also show that early-branching cyanobacteria contain late-branching CBCRs, implicating early appearance of CBCRs during cyanobacterial evolution. Moreover, we show that early-branching CBCRs behave as integrators of light and pH, providing a potential unique function for early CBCRs that led to their retention and subsequent diversification. Our results thus provide new insight into the origins of these diverse cyanobacterial photoreceptors.
Collapse
Affiliation(s)
- Nathan C Rockwell
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| | - J Clark Lagarias
- 31 Briggs Hall, Department of Molecular and Cell Biology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
4
|
Pennacchietti F, Losi A, Xu XL, Zhao KH, Gärtner W, Viappiani C, Cella F, Diaspro A, Abbruzzetti S. Photochromic conversion in a red/green cyanobacteriochrome from Synechocystis PCC6803: quantum yields in solution and photoswitching dynamics in living E. coli cells. Photochem Photobiol Sci 2015; 14:229-37. [DOI: 10.1039/c4pp00337c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochromic conversion in GAF3 has been followed in solution and in E. coli cells.
Collapse
Affiliation(s)
| | - Aba Losi
- Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”
- Università di Parma
- Parma
- Italy
| | - Xiu-ling Xu
- Max-Planck-Institute for Chemical Energy Conversion
- D-45470 Mülheim
- Germany
| | - Kai-hong Zhao
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion
- D-45470 Mülheim
- Germany
| | - Cristiano Viappiani
- Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”
- Università di Parma
- Parma
- Italy
- NEST
| | | | - Alberto Diaspro
- Fondazione Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- Nikon Imaging Center
- Fondazione Istituto Italiano di Tecnologia
| | | |
Collapse
|
5
|
Salewski J, Escobar FV, Kaminski S, von Stetten D, Keidel A, Rippers Y, Michael N, Scheerer P, Piwowarski P, Bartl F, Frankenberg-Dinkel N, Ringsdorf S, Gärtner W, Lamparter T, Mroginski MA, Hildebrandt P. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes. J Biol Chem 2013; 288:16800-16814. [PMID: 23603902 DOI: 10.1074/jbc.m113.457531] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion.
Collapse
Affiliation(s)
- Johannes Salewski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Steve Kaminski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - David von Stetten
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany; Structural Biology Group, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Anke Keidel
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Yvonne Rippers
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Protein X-ray Crystallography, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Spectroscopy, Charité-University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franz Bartl
- Institute of Medical Physics and Biophysics (CCO), D-10117 Berlin, Germany; AG Spectroscopy, Charité-University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Nicole Frankenberg-Dinkel
- AG Physiologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Simone Ringsdorf
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Tilman Lamparter
- Institut für Allgemeine Botanik, Karlsruher Institut für Technologie, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
6
|
Shi F, Li N, Liu S, Qin S. Sequence analysis of the Microcystis aeruginosa FACHB-912 phytochrome gene supports positive selection in cyanobacteria. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Bongards C, Gärtner W. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles. Acc Chem Res 2010; 43:485-95. [PMID: 20055450 DOI: 10.1021/ar800133x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In plants and bacteria, phytochromes serve as light-inducible, red-/far-red light sensitive photoreceptors that control a wide range of photomorphogenetic processes. Phytochromes comprise a protein moiety and a covalently bound bilin chromophore. Bilins are open-chain tetrapyrrole compounds that derive biosynthetically from ubiquitous porphyrins. The investigations of phytochromes reveal that precise interactions between the protein moiety and its bilin chromophore are essential for the proper functioning of this photoreceptor; accordingly, synthetic manipulation of the parts is an important method for studying the whole. Although variations in the protein structure are readily accomplished by routine mutagenesis protocols, the generation of structurally modified bilins is a laborious, multistep process. Recent improvement in the synthesis of open-chain tetrapyrroles now permits the generation of novel, structurally modified (and even selectively isotope-labeled) chromophores. Furthermore, by using the capability of recombinant apo-phytochrome to bind the chromophore autocatalytically, researchers can now generate novel chromoproteins with modified functions. In the protein-bound state, the phytochrome chromophore is photoisomerized at one double bond, in the bridge between the last two of the four pyrrole rings (the C and D rings), generating the thermally stable, physiologically active P(fr) form. This conversion--photoisomerization from the form absorbing red light (P(r)) to the form absorbing far-red light (P(fr))--covers 12 orders of magnitude, from subpicoseconds to seconds. Such spectroscopic and kinetic studies yield a wealth of time-resolved spectral data, even more so, if proteins with changed sequence or chromophore structure are utilized. In particular, bilins with a changed substitution pattern at the photoisomerizing ring D have shed light on the chromophore-protein interactions during the photoisomerization. The mechanisms generating and stabilizing the light-induced P(fr) form of phytochromes are now seen in greater detail. On the other hand, the use of bilins with selective incorporation of stable isotopes identify light-induced conformational motions when studied by vibrational (FTIR and Raman) and NMR spectroscopy. In this Account, we present spectroscopic investigations that provide structural details in these biological photoreceptors with great precision and document the dynamics elicited by light excitation. This approach yields important information that complements the data deduced from crystal structure.
Collapse
Affiliation(s)
- Christian Bongards
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Murgida DH, von Stetten D, Hildebrandt P, Schwinté P, Siebert F, Sharda S, Gärtner W, Mroginski MA. The chromophore structures of the Pr States in plant and bacterial phytochromes. Biophys J 2007; 93:2410-7. [PMID: 17545245 PMCID: PMC1965450 DOI: 10.1529/biophysj.107.108092] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The resonance Raman spectra of the Pr state of the N-terminal 65-kDa fragment of plant phytochrome phyA have been measured and analyzed in terms of the configuration and conformation of the tetrapyrroles methine bridges. Spectra were obtained from phyA adducts reconstituted with the natural chromophore phytochromobilin as well as phycocyanobilin and its isotopomers labeled at the terminal methine bridges through (13)C/(12)C and D/H substitution. Upon comparing the resonance Raman spectra of the various phyA adducts, it was possible to identify the bands that originate from normal modes dominated by the stretching coordinates of the terminal methine bridges A-B and C-D. Quantum chemical calculations of the isolated tetrapyrroles reveal that these modes are sensitive indicators for the methine bridge configuration and conformation. For all phyA adducts, the experimental spectra of Pr including this marker band region are well reproduced by the calculated spectra obtained for the ZZZasa configuration. In contrast, there are substantial discrepancies between the experimental spectra and the spectra calculated for the ZZZssa configuration, which has been previously shown to be the chromophore geometry in the Pr state of the bacterial, biliverdin-binding phytochrome from Deinococcus radiodurans (Wagner, J. R., J. S. Brunzelle, K. T. Forest, R. D. Vierstra. 2005. Nature. 438:325-331). The results of this work, therefore, suggest that plant and bacterial (biliverdin-binding) phytochromes exhibit different structures in the parent state although the mechanism of the photoinduced reaction cycle may be quite similar.
Collapse
Affiliation(s)
- Daniel H Murgida
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Sekr. PC 14, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|