1
|
Tanaka J, Haga K, Urakami N, Imai M, Sakuma Y. Temperature dependence of membrane viscosity of ternary lipid GUV with L o domains. Biophys J 2025; 124:818-828. [PMID: 39905732 PMCID: PMC11897551 DOI: 10.1016/j.bpj.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
In the cell membrane, it is considered that saturated lipids and cholesterol organize liquid-ordered (Lo) domains in a sea of liquid-disordered (Ld) phases and proteins relevant to cellular functions are localized in the Lo domains. Since the diffusion of transmembrane proteins is regulated by the membrane viscosity, we investigate the temperature dependence of the membrane viscosity of the ternary giant unilamellar vesicles (GUVs) composed of the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, the unsaturated lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol to understand the effect of the phase separation on the membrane viscosity using a microinjection technique. In the microinjection method, membrane viscosity is estimated by comparing the flow pattern induced on a spherical membrane with a hydrodynamic model. For phase-separated GUVs, the flow pattern is visualized by the motion of the domains. In this study, we developed a method to visualize the flow patterns of homogeneous GUVs above the phase separation temperature by using beads attached to the GUVs. We succeeded in measuring the membrane viscosity of ternary GUVs both above phase separation temperature and in the phase-separated region and found that the membrane viscosity decreases dramatically by phase separation. In the phase-separated region, i.e., GUVs with Lo domains, the membrane viscosity is determined by that of the Ld phase, ηLd, and shows weak temperature dependence compared to that of the DOPC single-component GUV, which is a main component of the Ld phase. We revealed that the Moelwyn-Hughest model, which takes into account the effects of the membrane composition, viscosity of the pure component, and interaction between components, well describes the obtained membrane viscosity of the ternary GUV both above the phase separation temperature and in the phase-separated region. The drastic decrease of the membrane viscosity by the phase separation plays an important role in regulating the mobility of constituents in multi-component membranes.
Collapse
Affiliation(s)
- Julia Tanaka
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Kenya Haga
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Naohito Urakami
- Department of Physics and Informatics, Graduate School of Science, Yamaguchi University, Yamaguchi, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Kodama A, Morandi M, Ebihara R, Jimbo T, Toyoda M, Sakuma Y, Imai M, Puff N, Angelova MI. Migration of Deformable Vesicles Induced by Ionic Stimuli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11484-11494. [PMID: 30156845 DOI: 10.1021/acs.langmuir.8b02105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have investigated the dynamics of phospholipid vesicles composed of 1,2-dioleoyl- sn-glycero-3-phosphocholine triggered by ionic stimuli using electrolytes such as CaCl2, NaCl, and NaOH. The ionic stimuli induce two characteristic vesicle dynamics, deformation due to the ion binding to the lipids in the outer leaflet of the vesicle and migration due to the concentration gradient of ions, that is, diffusiophoresis or the interfacial energy gradient mechanism. We examined the deformation pathway for each electrolyte as a function of time and analyzed it based on the surface dissociation model and the area difference elasticity model, which reveals the change of the cross-sectional area of the phospholipid by the ion binding. The metal ions such as Ca2+ and Na+ encourage inward budding deformation by decreasing the cross-sectional area of a lipid, whereas the hydroxide ion (OH-) encourages outward budding deformation by increasing the cross-sectional area of a lipid. When we microinjected these electrolytes toward the vesicles, a strong coupling between the deformation and the migration of the vesicle was observed for CaCl2 and NaOH, whereas for NaCl, the coupling was very weak. This difference probably originates from the binding constants of the ions.
Collapse
Affiliation(s)
- Atsuji Kodama
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Mattia Morandi
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Ryuta Ebihara
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Takehiro Jimbo
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Masayuki Toyoda
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science , Tohoku University , Aoba, Aramaki, Aoba, Sendai 980-8578 , Japan
| | - Nicolas Puff
- Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS , Sorbonne Paris Cité - Paris 7 , F-75013 Paris , France
- Faculty of Science and Engineering - Paris 6 / Sorbonne University , F-75005 Paris , France
| | - Miglena I Angelova
- Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS , Sorbonne Paris Cité - Paris 7 , F-75013 Paris , France
- Faculty of Science and Engineering - Paris 6 / Sorbonne University , F-75005 Paris , France
| |
Collapse
|
3
|
Hakobyan D, Heuer A. 2D lattice model of a lipid bilayer: Microscopic derivation and thermodynamic exploration. J Chem Phys 2017; 146:064305. [DOI: 10.1063/1.4975163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Davit Hakobyan
- Institute of Physical Chemistry, WWU Münster, Corrensstr. 28/30, 48149 Münster, Germany and Center for Multiscale Theory and Computation (CMTC), WWU Münster, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, WWU Münster, Corrensstr. 28/30, 48149 Münster, Germany and Center for Multiscale Theory and Computation (CMTC), WWU Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Al-Dossary AA, Bathala P, Caplan JL, Martin-DeLeon PA. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: DETECTION OF FUSION AND UNDERLYING MOLECULAR PLAYERS USING THREE-DIMENSIONAL SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY (SR-SIM). J Biol Chem 2015; 290:17710-17723. [PMID: 26023236 DOI: 10.1074/jbc.m114.633156] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Oviductosomes ((OVS), exosomes/microvesicles), which deliver the Ca(2+) efflux pump, plasma membrane Ca(2+)ATPase 4 (PMCA4), to sperm are likely to play an important role in sperm fertilizing ability (Al-Dossary, A. A., Strehler, E. E., and Martin-DeLeon, P. A. (2013) PloS one 8, e80181). It is unknown how exosomes/microvesicles deliver transmembrane proteins such as PMCA4 to sperm. Here we define a novel experimental approach for the assessment of the interaction of OVS with sperm at a nanoscale level, using a lipophilic dye (FM4-64FX) and three-dimensional SR/SIM, which has an 8-fold increase in volumetric resolution, compared with conventional confocal microscopy. Coincubation assays detected fusion of prelabeled OVS with sperm, primarily over the head and midpiece. Immunofluorescence revealed oviductosomal delivery of PMCA4a to WT and Pmca4 KO sperm, and also endogenous PMCA4a on the inner acrosomal membrane. Fusion was confirmed by transmission immunoelectron microscopy, showing immunogold particles in OVS, and fusion stalks on sperm membrane. Immunofluorescence colocalized OVS with the αv integrin subunit which, along with CD9, resides primarily on the sperm head and midpiece. In capacitated and acrosome reacted sperm, fusion was significantly (p < 0.001) inhibited by blocking integrin/ligand interactions via antibodies, exogenous ligands (vitronectin and fibronectin), and their RGD recognition motif. Our results provide evidence that receptor/ligand interactions, involving αvβ3 and α5β1integrins on sperm and OVS, facilitate fusion of OVS in the delivery of transmembrane proteins to sperm. The mechanism uncovered is likely to be also involved in cargo delivery of prostasomes, epididymosomes, and uterosomes.
Collapse
Affiliation(s)
- Amal A Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716; Delaware Biotechnology Institute, Newark, Delaware 19711
| | | |
Collapse
|
5
|
Heberle FA, Petruzielo RS, Pan J, Drazba P, Kučerka N, Standaert RF, Feigenson GW, Katsaras J. Bilayer thickness mismatch controls domain size in model membranes. J Am Chem Soc 2013; 135:6853-9. [PMID: 23391155 DOI: 10.1021/ja3113615] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The observation of lateral phase separation in lipid bilayers has received considerable attention, especially in connection to lipid raft phenomena in cells. It is widely accepted that rafts play a central role in cellular processes, notably signal transduction. While micrometer-sized domains are observed with some model membrane mixtures, rafts much smaller than 100 nm-beyond the reach of optical microscopy-are now thought to exist, both in vitro and in vivo. We have used small-angle neutron scattering, a probe free technique, to measure the size of nanoscopic membrane domains in unilamellar vesicles with unprecedented accuracy. These experiments were performed using a four-component model system containing fixed proportions of cholesterol and the saturated phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), mixed with varying amounts of the unsaturated phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We find that liquid domain size increases with the extent of acyl chain unsaturation (DOPC:POPC ratio). Furthermore, we find a direct correlation between domain size and the mismatch in bilayer thickness of the coexisting liquid-ordered and liquid-disordered phases, suggesting a dominant role for line tension in controlling domain size. While this result is expected from line tension theories, we provide the first experimental verification in free-floating bilayers. Importantly, we also find that changes in bilayer thickness, which accompany changes in the degree of lipid chain unsaturation, are entirely confined to the disordered phase. Together, these results suggest how the size of functional domains in homeothermic cells may be regulated through changes in lipid composition.
Collapse
Affiliation(s)
- Frederick A Heberle
- Biology & Soft Matter, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mercker M, Ptashnyk M, Kühnle J, Hartmann D, Weiss M, Jäger W. A multiscale approach to curvature modulated sorting in biological membranes. J Theor Biol 2012; 301:67-82. [DOI: 10.1016/j.jtbi.2012.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/29/2022]
|
7
|
Sakuma Y, Urakami N, Taniguchi T, Imai M. Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:284104. [PMID: 21709321 DOI: 10.1088/0953-8984/23/28/284104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have investigated the lipid sorting in a binary small unilamellar vesicle (SUV) composed of cone-shaped (1,2-dihexanoyl-sn-glycero-3-phosphocholine: DHPC) and cylinder-shaped (1,2-dipalmitoyl-sn-glycero-3-phosphocholine: DPPC) lipids. In order to reveal the lipid sorting we adopted a contrast matching technique of small angle neutron scattering (SANS), which extracts the distribution of deuterated lipids in the bilayer quantitatively without steric modification of lipids as in fluorescence probe techniques. First the SANS profile of protonated SUVs at a film contrast condition showed that SUVs have a spherical shape with an inner radius of 190 Å and a bilayer thickness of 40 Å. The SANS profile of deuterated SUVs at a contrast matching condition showed a characteristic scattering profile, indicating an asymmetric distribution of cone-shaped lipids in the bilayer. The characteristic profile was described well by a spherical bilayer model. The fitting revealed that most DHPC molecules are localized in the outer leaflet. Thus the shape of the lipid is strongly coupled with the membrane curvature. We compared the obtained asymmetric distribution of the cone-shaped lipids in the bilayer with the theoretical prediction based on the curvature energy model.
Collapse
Affiliation(s)
- Y Sakuma
- Department of Physics, Ochanomizu University, Bunkyo, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Shintani M, Yoshida K, Sakuraba S, Nakahara M, Matubayasi N. NMR-NOE and MD simulation study on phospholipid membranes: dependence on membrane diameter and multiple time scale dynamics. J Phys Chem B 2011; 115:9106-15. [PMID: 21728286 DOI: 10.1021/jp204051f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Motional correlation times between the hydrophilic and hydrophobic terminal groups in lipid membranes are studied over a wide range of curvatures using the solution-state (1)H NMR-nuclear Overhauser effect (NOE) and molecular dynamics (MD) simulation. To enable (1)H NMR-NOE measurements for large vesicles, the transient NOE method is combined with the spin-echo method, and is successfully applied to a micelle of 1-palmitoyl-lysophosphatidylcholine (PaLPC) with diameter of 5 nm and to vesicles of dipalmitoylphosphatidylcholine (DPPC) with diameters ranging from 30 to 800 nm. It is found that the NOE intensity increases with the diameter up to ∼100 nm, and the model membrane is considered planar on the molecular level beyond ∼100 nm. While the NOE between the hydrophilic terminal and hydrophobic terminal methyl groups is absent for the micelle, its intensity is comparable to that for the neighboring group for vesicles with larger diameters. The origin of NOE signals between distant sites is analyzed by MD simulations of PaLPC micelles and DPPC planar bilayers. The slow relaxation is shown to yield an observable NOE signal even for the hydrophilic and hydrophobic terminal sites. Since the information on distance and dynamics cannot be separated in the experimental NOE alone, the correlation time in large vesicles is determined by combining the experimental NOE intensity and MD-based distance distribution. For large vesicles, the correlation time is found to vary by 2 orders of magnitude over the proton sites. This study shows that NOE provides dynamic information on large vesicles when combined with MD, which provides structural information.
Collapse
Affiliation(s)
- Megumi Shintani
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
9
|
Vogtt K, Jeworrek C, Garamus VM, Winter R. Microdomains in lipid vesicles: structure and distribution assessed by small-angle neutron scattering. J Phys Chem B 2010; 114:5643-8. [PMID: 20369805 DOI: 10.1021/jp101167n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We examined the structure and distribution of microdomains in ternary multilamellar and unilamellar vesicles representing a canonical model raft mixture consisting of dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), and cholesterol via contrast matched small-angle neutron scattering (SANS). The impetus of the work was to reveal the size and distribution of microdomains consistent with the form factor and intermolecular structure factor S(Q) of the scattering pattern of unilamellar and multilamellar vesicles prepared from this ternary lipid system. The data are consistent with the presence of cylindrically shaped microdomains with an average radius of approximately 15 nm assembled in a fractal-like geometry, and with corresponding modeling studies. In the multilamellar vesicle system, coupling of domains across the interlamellar water layer is observed.
Collapse
Affiliation(s)
- Karsten Vogtt
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 100, D-14109 Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Pabst G, Kucerka N, Nieh MP, Rheinstädter MC, Katsaras J. Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids 2010; 163:460-79. [PMID: 20361949 DOI: 10.1016/j.chemphyslip.2010.03.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022]
Abstract
Scattering techniques, in particular electron, neutron and X-ray scattering have played a major role in elucidating the static and dynamic structure of biologically relevant membranes. Importantly, neutron and X-ray scattering have evolved to address new sample preparations that better mimic biological membranes. In this review, we will report on some of the latest model membrane results, and the neutron and X-ray techniques that were used to obtain them.
Collapse
Affiliation(s)
- G Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, A-8042 Graz, Austria
| | | | | | | | | |
Collapse
|
11
|
Beck P, Liebi M, Kohlbrecher J, Ishikawa T, Rüegger H, Zepik H, Fischer P, Walde P, Windhab E. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides. J Phys Chem B 2010; 114:174-86. [PMID: 20017528 DOI: 10.1021/jp907442e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).
Collapse
Affiliation(s)
- Paul Beck
- Laboratory of Food Process Engineering, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kučerka N, Nieh MP, Katsaras J. Small-Angle Scattering from Homogenous and Heterogeneous Lipid Bilayers. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2010. [DOI: 10.1016/b978-0-12-381266-7.00008-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Kucerka N, Nieh MP, Katsaras J. Asymmetric distribution of cholesterol in unilamellar vesicles of monounsaturated phospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:13522-13527. [PMID: 19678653 DOI: 10.1021/la9020299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have studied the effect of cholesterol on curved bilayers using 600 A unilamellar vesicles made of monounsaturated lipids. From small-angle X-ray scattering experiments we were able to detect an asymmetric distribution of lipid densities across certain bilayers. We discovered that, with the exception of diC24:1PC bilayers, monounsaturated diacylphosphatidylcholine lipids (diCn:1PC, n = 14, 16, 18, 20, and 22) form symmetric bilayers. However, the addition of 44 mol % cholesterol resulted in some of these bilayers (i.e., n = 14, 16, and 18) to become asymmetric, where cholesterol was found to distribute unequally between the bilayer's two leaflets. This finding is potentially of relevance to biological membranes made up of different types of lipids and whose local curvature may be dictated by lipid composition.
Collapse
Affiliation(s)
- Norbert Kucerka
- Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada.
| | | | | |
Collapse
|
14
|
Sorting of lipids and proteins in membrane curvature gradients. Biophys J 2009; 96:2676-88. [PMID: 19348750 DOI: 10.1016/j.bpj.2008.11.067] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022] Open
Abstract
The sorting of lipids and proteins in cellular trafficking pathways is a process of central importance in maintaining compartmentalization in eukaryotic cells. However, the mechanisms behind these sorting phenomena are currently far from being understood. Among several mechanistic suggestions, membrane curvature has been invoked as a means to segregate lipids and proteins in cellular sorting centers. To assess this hypothesis, we investigate the sorting of lipid analog dye trace components between highly curved tubular membranes and essentially flat membranes of giant unilamellar vesicles. Our experimental findings indicate that intracellular lipid sorting, contrary to frequent assumptions, is unlikely to occur by lipids fitting into membrane regions of appropriate curvature. This observation is explained in the framework of statistical mechanical lattice models that show that entropy, rather than curvature energy, dominates lipid distribution in the absence of strongly preferential lateral intermolecular interactions. Combined with previous findings of curvature induced phase segregation, we conclude that lipid cooperativity is required to enable efficient sorting. In contrast to lipid analog dyes, the peripheral membrane binding protein Cholera toxin subunit B is effectively curvature-sorted. The sorting of Cholera toxin subunit B is rationalized by statistical models. We discuss the implications of our findings for intracellular sorting mechanisms.
Collapse
|