1
|
Pinocytosis as the Biological Mechanism That Protects Pgp Function in Multidrug Resistant Cancer Cells and in Blood–Brain Barrier Endothelial Cells. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Chemotherapy has shown reasonable success in treating cancer. However, multidrug resistance (MDR), a phenomenon by which cancerous cells become resistant to a broad range of functionally and structurally unrelated chemotherapeutic agents, is a major drawback in the effective use of chemotherapeutic agents in the clinic. Overexpression of P-glycoprotein (Pgp) is a major cause of MDR in cancer as it actively effluxes a wide range of structurally and chemically unrelated substrates, including chemotherapeutic agents. Interestingly, Pgp is also overexpressed in the endothelial cells of blood–brain barrier (BBB) restricting the entry of 98% small molecule drugs to the brain. The efficacy of Pgp is sensitive to any impairment of the membrane structure. A small increase of 2% in the membrane surface tension, which can be caused by a very low drug concentration, is enough to block the Pgp function. We demonstrate in this work by mathematical equations that the incorporation of drugs does increase the surface tension as expected, and the mechanism of endocytosis dissipates any increase in surface tension by augmenting the internalisation of membrane per unit of time, such that an increase in the surface tension of about 2% can be dissipated within only 4.5 s.
Collapse
|
2
|
Zhang B, Zhang J, Kang Z, Liang L, Liu Y, Wang Q. On interactions of P-glycoprotein with various anti-tumor drugs by binding free energy calculations. J Biomol Struct Dyn 2020; 39:5335-5347. [PMID: 32608321 DOI: 10.1080/07391102.2020.1786456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
P-glycoprotein (P-gp, MDR1), one of ATP-binding cassette transporters, may confer tumor cells cross-resistance to chemotherapeutics. A large amount of P-gp inhibitors were designed to inhibit the multidrug resistance (MDR) feature of P-gp. However, no sufficient researches were reported to explore the correlation between binding capacity and drug property by experiment. Without particular drug property found to inhibit the MDR feature of P-gp, the orientation of drug design is indefinite. In this work, 10 representative cancer drugs with various properties are used to bind with P-gp by molecular dynamics simulation. Binding free energy between P-gp and 10 drugs ranges -139 to -253 kJ/mol. It reveals that the promiscuity nature of P-gp is in light of the similar binding free energy in separate P-gp-ligand binding systems. The binding effect of P-gp and drugs correlates well with the size of drugs and has no apparent correlation with the polarity of each drug. The key reason is that van der Waal's interaction occupies most of the total binding free energy, and it is led by the number of atoms in the drugs. Two transmembrane segments (TM6 and TM12) and three types of amino acids (PHE, MET, and GLN) are vital in binding drugs with van der Waal's energy, which evident the influence between binding stability and size of drugs. This work provides the cause and theoretical basis for the promiscuity nature of P-gp.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Junqiao Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Lijun Liang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth. J Theor Biol 2018; 436:120-134. [DOI: 10.1016/j.jtbi.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 01/07/2023]
|
4
|
Cho H, Levy D. Modeling the Dynamics of Heterogeneity of Solid Tumors in Response to Chemotherapy. Bull Math Biol 2017; 79:2986-3012. [DOI: 10.1007/s11538-017-0359-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
|
5
|
Walsh M, Fais S, Spugnini EP, Harguindey S, Abu Izneid T, Scacco L, Williams P, Allegrucci C, Rauch C, Omran Z. Proton pump inhibitors for the treatment of cancer in companion animals. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:93. [PMID: 26337905 PMCID: PMC4559889 DOI: 10.1186/s13046-015-0204-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
The treatment of cancer presents a clinical challenge both in human and veterinary medicine. Chemotherapy protocols require the use of toxic drugs that are not always specific, do not selectively target cancerous cells thus resulting in many side effects. A recent therapeutic approach takes advantage of the altered acidity of the tumour microenvironment by using proton pump inhibitors (PPIs) to block the hydrogen transport out of the cell. The alteration of the extracellular pH kills tumour cells, reverses drug resistance, and reduces cancer metastasis. Human clinical trials have prompted to consider this as a viable and safe option for the treatment of cancer in companion animals. Preliminary animal studies suggest that the same positive outcome could be achievable. The purpose of this review is to support investigations into the use of PPIs for cancer treatment cancer in companion animals by considering the evidence available in both human and veterinary medicine.
Collapse
Affiliation(s)
- Megan Walsh
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | | | - Salvador Harguindey
- Institute for Clinical Biology and Metabolism, c) Postas 13, 01004, Vitoria, Spain.
| | - Tareq Abu Izneid
- College of Pharmacy, Umm Al-Qura University, Al-Abidiyya, 21955, Makkah, Kingdom of Saudi Arabia.
| | - Licia Scacco
- Equivet Roma Hospital, Equine Veterinary Clinic, Via di Torre di Sant'Anastasia 83, 00134, Rome, Italy
| | - Paula Williams
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Al-Abidiyya, 21955, Makkah, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat 2015; 23:69-78. [PMID: 26341193 DOI: 10.1016/j.drup.2015.08.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide substantial new evidence that altering the acidic tumor microenvironment is an effective, well tolerated and low cost strategy for the overcoming of anticancer drug resistance.
Collapse
Affiliation(s)
- Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK
| | | | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
7
|
Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol 2015; 36:716-26. [DOI: 10.3109/07388551.2015.1015957] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Melis Kartal-Yandim
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, İzmir, Turkey and
| | - Aysun Adan-Gokbulut
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, İzmir, Turkey and
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, İzmir, Turkey and
- Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
8
|
Kosztyu P, Bukvova R, Dolezel P, Mlejnek P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact 2014; 219:203-10. [PMID: 24954033 DOI: 10.1016/j.cbi.2014.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 01/11/2023]
Abstract
The effect of ABCB1 (P-gp, (P-glycoprotein), MDR1) and ABCG2 (BCRP1, (breast cancer resistance protein 1)) expressions on cell resistance to daunorubicin (DRN), imatinib, and nilotinib was studied in human leukemia cells. We used a set of cells derived from a parental K562 cell line, expressing various levels of ABCB1 and ABCG2, respectively. The function of ABCB1 and ABCG2 was confirmed using calcein AM and pheophorbide A accumulation assays, respectively. These assays indicated distinct differences in activities of ABCB1 and ABCG2 which corresponded to their expression levels. We observed that the resistance to DRN and imatinib was proportional to the expression level of ABCB1. Similarly, the resistance to nilotinib and imatinib was proportional to the expression level of ABCG2. Importantly, K562/DoxDR05 and K562/ABCG2-Z cells with the lowest expressions of ABCB1 and ABCG2, respectively, failed to reduce the intracellular levels of imatinib to provide a significant resistance to this drug. However, the K562/DoxDR05 and K562/ABCG2-Z cells significantly decreased the intracellular levels of DRN and nilotinib, respectively, thereby mediating significant resistances to these drugs. Only cells which expression of ABCB1 or ABCG2 exceeded a certain level exhibited a significantly decreased intracellular level of imatinib, and this effect was accompanied by a significantly increased resistance to this drug. Our results clearly indicated that resistance to anticancer drugs mediated by main ABC transporters, ABCB1 and ABCG2, strongly depends on their expressions at protein levels. Importantly, resistance for one drug might be maintained while resistance for other ones might become undetectable at low transporter expression levels.
Collapse
Affiliation(s)
- Petr Kosztyu
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Romana Bukvova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Petr Dolezel
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Petr Mlejnek
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
9
|
Importance of the difference in surface pressures of the cell membrane in doxorubicin resistant cells that do not express Pgp and ABCG2. Cell Biochem Biophys 2014; 66:499-512. [PMID: 23314884 PMCID: PMC3726932 DOI: 10.1007/s12013-012-9497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-glycoprotein (Pgp) represents the archetypal mechanism of drug resistance. But Pgp alone cannot expel drugs. A small but growing body of works has demonstrated that the membrane biophysical properties are central to Pgp-mediated drug resistance. For example, a change in the membrane surface pressure is expected to support drug–Pgp interaction. An interesting aspect from these models is that under specific conditions, the membrane is predicted to take over Pgp concerning the mechanism of drug resistance especially when the surface pressure is high enough, at which point drugs remain physically blocked at the membrane level. However it remains to be determined experimentally whether the membrane itself could, on its own, affect drug entry into cells that have been selected by a low concentration of drug and that do not express transporters. We demonstrate here that in the case of the drug doxorubicin, alteration of the surface pressure of membrane leaflets drive drug resistance.
Collapse
|
10
|
Rauch C, Paine SW, Littlewood P. Can long range mechanical interaction between drugs and membrane proteins define the notion of molecular promiscuity? Application to P-glycoprotein-mediated multidrug resistance (MDR). Biochim Biophys Acta Gen Subj 2013; 1830:5112-8. [PMID: 23850561 DOI: 10.1016/j.bbagen.2013.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/17/2013] [Accepted: 06/30/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Failure of treatment in over 90% of patients with metastatic cancer is due to acquired MDR. P-glycoprotein (Pgp) remains the archetypal drug membrane transporter expressed in many MDR cancer cells. Albeit the ATPase activity of Pgp is triggered by the presence of drug in the membrane, it is commonly assumed that when two drug molecules meet the same Pgp the protein cannot handle them efficiently due to steric effects and as a result the ATPase activity drops. However it is also possible that drug accumulating in the lipid-phase may affect the membrane in such a way that it imposes the mechanical closure of transporters by opposing the force mediated by ATP consumption. In this context, long range interactions between drug and membrane proteins could exist. METHODS Recent data concerning Pgp structure have allowed us to formalize this hypothesis and we present a physico-mathematical model that is not based on predictive QSAR or other empirical methods applied to experimental data. RESULTS Long range mechanical interactions between Pgp and drugs are predicted to occur at an external concentration of drug ~10-100μM as previously determined experimentally at which concentration ~50% of transporters should be rendered inactive. CONCLUSION Distance interaction(s) between Pgp and drugs exist explaining an ill-defined effect concerning the ability of any drug to inhibit Pgp once a threshold concentration in the membrane has been reached. GENERAL SIGNIFICANCE Potential application of the theory in the field of pharmacology concentrating on the notion of molecular promiscuity and toxicity in drug discovery prediction is discussed.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | | | | |
Collapse
|
11
|
Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:606-17. [DOI: 10.1016/j.bbadis.2013.01.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 12/27/2022]
|
12
|
Lavi O, Gottesman MM, Levy D. The dynamics of drug resistance: a mathematical perspective. Drug Resist Updat 2012; 15:90-7. [PMID: 22387162 DOI: 10.1016/j.drup.2012.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to chemotherapy is a key impediment to successful cancer treatment that has been intensively studied for the last three decades. Several central mechanisms have been identified as contributing to the resistance. In the case of multidrug resistance (MDR), the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Mathematical models of drug resistance have dealt with many of the known aspects of this field, such as pharmacologic sanctuary and location/diffusion resistance, intrinsic resistance, induced resistance and acquired resistance. In addition, there are mathematical models that take into account the kinetic/phase resistance, and models that investigate intracellular mechanisms based on specific biological functions (such as ABC transporters, apoptosis and repair mechanisms). This review covers aspects of MDR that have been mathematically studied, and explains how, from a methodological perspective, mathematics can be used to study drug resistance. We discuss quantitative approaches of mathematical analysis, and demonstrate how mathematics can be used in combination with other experimental and clinical tools. We emphasize the potential benefits of integrating analytical and mathematical methods into future clinical and experimental studies of drug resistance.
Collapse
Affiliation(s)
- Orit Lavi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20742, USA
| | | | | |
Collapse
|
13
|
Rauch C. The “Multi” of Drug Resistance Explained by Oscillating Drug Transporters, Drug–Membrane Physical Interactions and Spatial Dimensionality. Cell Biochem Biophys 2011; 61:103-13. [DOI: 10.1007/s12013-011-9166-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouysségur J, Gatenby RA, Rivoltini L, Fais S. Proton dynamics in cancer. J Transl Med 2010; 8:57. [PMID: 20550689 PMCID: PMC2905351 DOI: 10.1186/1479-5876-8-57] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 06/15/2010] [Indexed: 02/04/2023] Open
Abstract
Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.
Collapse
Affiliation(s)
- Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|