1
|
Guan Y, Chen R, Sun G, Liu Q, Liu J, Yu J, Lin C, Duan J, Wang J. Crawling and adhesion behavior of Halamphora sp. based on different parts of Folium Sennae-like film: Evaluation of analytical methods for anti-diatom experimental results. Micron 2021; 152:103178. [PMID: 34801958 DOI: 10.1016/j.micron.2021.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Anti-diatom testing is a basic method to evaluate the anti-fouling performance of coatings. Many existing results of anti-diatom performances are evaluated based on their attachment number or coverage area, ignoring the influence of the crawling and adhesion behavior of diatoms on the analysis results. Here, a Folium Sennae-like film with multiple structural units was prepared by considering the influence of diatom attachment behaviors on the analysis results. The anti-diatom performances of different parts (divided and called four parts: edge, surface, cross striation, and vertical pattern) on the Folium Sennae-like film were evaluated using the counting and area methods. Obviously, the anti-diatom performance of the Folium Sennae-like film was superior to that of epoxy resin without structure. Under equal areas, the average numbers of diatoms on the cross striation and the vertical pattern were similar to the surface. It was found that the attachment behavior of Halamphora sp. is affected by microstructure units, rather than the combined structure of which the scale is much larger than that of diatoms. Meanwhile, the average attachment area for the unit number of diatoms was calculated. The diatom attachment area without microstructure, surface, cross striation, or vertical pattern was 81.751, 106.950, 73.904, and 84.376 μm2, respectively. Moreover, the static and dynamic motion behaviors of Halamphora sp. were studied, and the theory for Halamphora sp. attachment was modeled in three dimensions. The variable morphology of Halamphora sp. lead to inaccurate results for diatom analyses based on the counting and area methods, which is summarized here. This study discusses the evaluation method of coatings by anti-diatom performance, further promoting the research of diatoms in the field of antifouling.
Collapse
Affiliation(s)
- Yu Guan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266101, China
| | - Jizhou Duan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China; Key Lab Marine Environm Corros & Biofouling, Chinese Academy of Sciences Institute of Oceanology, Qingdao, 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| |
Collapse
|
2
|
Migration of the 3T3 Cell with a Lamellipodium on Various Stiffness Substrates—Tensegrity Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Changes in mechanical stimuli and the physiological environment are sensed by the cell. Thesechanges influence the cell’s motility patterns. The cell’s directional migration is dependent on the substrate stiffness. To describe such behavior of a cell, a tensegrity model was used. Cells with an extended lamellipodium were modeled. The internal elastic strain energy of a cell attached to the substrates with different stiffnesses was evaluated. The obtained results show that on the stiffer substrate, the elastic strain energy of the cell adherent to this substrate decreases. Therefore, the substrate stiffness is one of the parameters that govern the cell’s directional movement.
Collapse
|
4
|
Shoumura S, Hamano R, Hanada Y, Mayama S, Umemura K. Single cell analysis of sinking diatoms studied using a homemade ‘tumbled’ optical microscope system. J Microbiol Methods 2020; 168:105804. [DOI: 10.1016/j.mimet.2019.105804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
|
5
|
Taira H, Kondo S, Kumashiro Y, Mayama S, Umemura K. Differences in dynamic behavior of single diatom cells caused by changing wavelengths. Micron 2018; 108:1-5. [PMID: 29499396 DOI: 10.1016/j.micron.2018.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 10/18/2022]
Abstract
We investigate a motion of diatom cells stimulated by a halogen lamp irradiation. Diatom cells are single-celled organisms which have chloroplast. Chloroplast contains photosynthetic pigment which absorbs blue light (wave length of the light is 400 nm-450 nm) and red one (650 nm-700 nm). Light intensity of the halogen lamp is fixed about 500 Lx during the experiment. We used colored films to cut the blue or red light and observed motion of diatom cells by using the optical microscope. We found that the speed of diatom cells decreases when the colored film is inserted, and it increases after ejecting the film. It is noted that the light intensity is constant during the experiment, which means that we change wave length of the irradiated light. Our results show that the average speed of diatom cells is influenced by not the light intensity but the wave length of the light.
Collapse
Affiliation(s)
- Hisao Taira
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan; Faculty of Education, Hokkaido University of Education, Sapporo, Hokkaido, 002-8502, Japan.
| | - Shunsuke Kondo
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Yoshikazu Kumashiro
- Institute of Advanced Biomedical Engineering and Science (TWINs), Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shigeki Mayama
- Faculty of Education, Tokyo Gakugei University, 4-1-1 Nukui-kita-machi, Koganei, Tokyo, 184-8511, Japan
| | - Kazuo Umemura
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| |
Collapse
|