1
|
Zhang Q, Pan Y, Pan J, Wang Z, Lu R, Sun J, Feng J. Differential insulin response characteristics of graphene oxide-gold nanoparticle composites under varied synthesis conditions. PLoS One 2025; 20:e0317126. [PMID: 39804896 PMCID: PMC11730386 DOI: 10.1371/journal.pone.0317126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method. Insulin was chosen as a basic protein to study the response characteristics of AuNPs/GO under different preparation conditions. Optical responses of these composites to pure insulin and various commercial insulin types were all explored for the first time. The results indicated that AuNPs/GO could optically respond to insulin, including pure insulin and various types of commercial insulin, and changes in the preparation conditions could really influence this response. Moreover, optimal preparation conditions could be determined by an optical method for the largest responses of the nanocomposites to insulin. Based on previous research and the results of this study, it is speculated that the responses of AuNPs/GO to insulin may attribute to glutamic acids, asparagines, and glutamines on insulin, which may interact with AuNPs/GO, particularly with the AuNPs in the composites. Besides, the AuNPs/GO could exhibit relatively stable responses to various commercial insulin types and detect the concentration of specific branded commercial insulin with smaller errors. In summary, this study demonstrated the application potential of AuNPs/GO in areas such as drug testing and production, while also furnishing an experimental foundation and direction for further applications of AuNPs/GO in biosensing and biomolecule detection.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yanjun Pan
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jin Pan
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhichen Wang
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ruyi Lu
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jing Sun
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
2
|
Szabó CL, Sebák F, Bodor A. Monitoring Protein Global and Local Parameters in Unfolding and Binding Studies: The Extended Applicability of the Diffusion Coefficient─Molecular Size Empirical Relations. Anal Chem 2022; 94:7885-7891. [PMID: 35617314 DOI: 10.1021/acs.analchem.2c00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein unfolding and denaturation are main issues in biochemical and pharmaceutical research. Using a global parameter, the translational diffusion coefficient D, folded, unfolded, and intrinsically disordered proteins of a given molar mass M can be distinguished based on their distinct hydrodynamic properties. For broader applications, we provide generalized, PFG-NMR-based empirical D-M relations validated at different temperatures and ready to use with the corresponding corrections in different media. We demonstrate that these relations enable a more accurate molecular mass determination and show fewer potential errors than those of the common methods based on small-molecular diffusion standards. We monitor unfolding of three model proteins using 8 M urea and dimethyl sulfoxide (DMSO)-water mixtures as denaturing agents, highlighting the effect of disulfide bonds. Denaturation in 8 M urea is pH-dependent; in addition, for proteins with highly stable disulfide bonds, a reducing agent (TCEP) is required to achieve complete unfolding. Regarding the effect of local parameters, we show that at low DMSO concentrations─common conditions in pharmaceutical binding studies─the PFG-NMR-derived global parameters are not significantly affected. Still, the atomic environments can change, and the bound solvent molecule can inhibit the binding of a partner molecule. Using proteins with natural isotopic abundance, this effect can be proven by fast 1H-15N 2D correlation spectra. Our results enable fast and easy estimation of protein molecular mass and the degree of folding in various media; moreover, the effect of the cosolvent on the atomic-level structure can be traced without the need of isotope labeling.
Collapse
Affiliation(s)
- Csenge Lilla Szabó
- Institute of Chemistry, Analytical and BioNMR Laboratory, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Fanni Sebák
- Institute of Chemistry, Analytical and BioNMR Laboratory, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Andrea Bodor
- Institute of Chemistry, Analytical and BioNMR Laboratory, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| |
Collapse
|
3
|
Mamardashvili GM, Lazovskiy DA, Khodov IA, Efimov AE, Mamardashvili NZ. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu 2+ Cation. Polymers (Basel) 2021; 13:829. [PMID: 33800405 PMCID: PMC7962819 DOI: 10.3390/polym13050829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy, mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR), thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone) leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to those involved in creating new 'chemo-responsive' (i.e., selectively interacting with other chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which can be controlled by varying the number and connection type of monomeric fragments in the polyporphyrin arrays.
Collapse
Affiliation(s)
| | | | | | | | - Nugzar Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia; (G.M.M.); (D.A.L.); (I.A.K.); (A.E.E.)
| |
Collapse
|
4
|
Mamardashvili GM, Lazovskiy DA, Khodov IA, Efimov AE, Mamardashvili NZ. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers (Basel) 2021. [DOI: https://doi.org/10.3390/polym13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy, mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR), thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone) leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to those involved in creating new ‘chemo-responsive’ (i.e., selectively interacting with other chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which can be controlled by varying the number and connection type of monomeric fragments in the polyporphyrin arrays.
Collapse
|
5
|
Ksenofontov AA, Stupikova SA, Bocharov PS, Lukanov MM, Ksenofontova KV, Khodov IA, Antina EV. Novel fluorescent sensors based on zinc(II) bis(dipyrromethenate)s for furosemide detection in organic media. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|