1
|
Avelar M, Coppola C, d’Ettorre A, Ienco A, Parisi ML, Basosi R, Santucci A, Olivucci M, Sinicropi A. In Silico Study of a Bacteriorhodopsin/TiO 2 Hybrid System at the Molecular Level. J Chem Theory Comput 2025; 21:3231-3245. [PMID: 40037620 PMCID: PMC11948329 DOI: 10.1021/acs.jctc.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Bacteriorhodopsin (bR) is a light-harvesting membrane protein that represents a promising sensitizer of TiO2 for photovoltaic and photoelectrochemical devices. However, despite numerous experimental studies, the molecular-level understanding of the bR/TiO2 hybrid system is still unsatisfactory. In this contribution, we report the construction and analysis of an atomistic model of such a system. To do so, both steered molecular dynamics-molecular dynamics and quantum mechanics/molecular mechanics computations are applied to four different bR orientations on the anatase TiO2 surface. The resulting bR/TiO2 models are then used to compute the light absorption maxima changes relative to those of bR. We show that all four models reproduce the experimentally observed blue-shift value induced by bR binding on TiO2 and could be used to study the binding and binding-induced protein modifications. We conclude that the constructed models could provide a basis for future studies aiming to simulate the complex long-range electron transfer mechanism in bR/TiO2-based solar energy conversion devices as well as in engineering bR to achieve enhanced efficiencies.
Collapse
Affiliation(s)
- Mayra Avelar
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Carmen Coppola
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Alessio d’Ettorre
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Ienco
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
| | - Maria Laura Parisi
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Riccardo Basosi
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Annalisa Santucci
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Massimo Olivucci
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Department
of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Adalgisa Sinicropi
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Espinoza-Araya C, Starbird R, Prasad ES, Renugopalakrishnan V, Mulchandani A, Bruce BD, Villarreal CC. A bacteriorhodopsin-based biohybrid solar cell using carbon-based electrolyte and cathode components. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148985. [PMID: 37236292 DOI: 10.1016/j.bbabio.2023.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
There is currently a high demand for energy production worldwide, mainly producing renewable and sustainable energy. Bio-sensitized solar cells (BSCs) are an excellent option in this field due to their optical and photoelectrical properties developed in recent years. One of the biosensitizers that shows promise in simplicity, stability and quantum efficiency is bacteriorhodopsin (bR), a photoactive, retinal-containing membrane protein. In the present work, we have utilized a mutant of bR, D96N, in a photoanode-sensitized TiO2 solar cell, integrating low-cost, carbon-based components, including a cathode composed of PEDOT (poly(3,4-ethylenedioxythiophene) functionalized with multi-walled carbon nanotubes (CNT) and a hydroquinone/benzoquinone (HQ/BQ) redox electrolyte. The photoanode and cathode were characterized morphologically and chemically (SEM, TEM, and Raman). The electrochemical performance of the bR-BSCs was investigated using linear sweep voltammetry (LSV), open circuit potential decay (VOC), and impedance spectroscopic analysis (EIS). The champion device yielded a current density (JSC) of 1.0 mA/cm2, VOC of -669 mV, a fill factor of ~24 %, and a power conversion efficiency (PCE) of 0.16 %. This bR device is one of the first bio-based solar cells utilizing carbon-based alternatives for the photoanode, cathode, and electrolyte. This may decrease the cost and significantly improve the device's sustainability.
Collapse
Affiliation(s)
- Christopher Espinoza-Araya
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Maestría en Ingeniería de Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - E Senthil Prasad
- Council of Scientific & Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | - Venkatesan Renugopalakrishnan
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; MGB Center for COVID Innovation, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, Boston, MA 02138, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA; Department of Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, USA; Center for Environmental Research & Technology (CE-CERT), University of California Riverside, Riverside, CA 92507, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, USA; Program in Genome Science and Technology, University of Tennessee at Knoxville, TN 37830, USA.
| | - Claudia C Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica.
| |
Collapse
|
3
|
Orona-Navar A, Aguilar-Hernández I, Nigam KDP, Cerdán-Pasarán A, Ornelas-Soto N. Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. J Biotechnol 2021; 332:29-53. [PMID: 33771626 DOI: 10.1016/j.jbiotec.2021.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Dye-sensitized solar cells have been of great interest in photovoltaic technology due to their capacity to convert energy at a low cost. The use of natural pigments means replacing expensive chemical synthesis processes by easily extractable pigments that are non-toxic and environmentally friendly. Although most of the pigments used for this purpose are obtained from higher plants, there are potential alternative sources that have been underexploited and have shown encouraging results, since pigments can also be obtained from organisms like bacteria, cyanobacteria, microalgae, yeast, and molds, which have the potential of being cultivated in bioreactors or optimized by biotechnological processes. The aforementioned organisms are sources of diverse sensitizers like photosynthetic pigments, accessory pigments, and secondary metabolites such as chlorophylls, bacteriochlorophylls, carotenoids, and phycobiliproteins. Moreover, retinal proteins, photosystems, and reaction centers from these organisms can also act as sensitizers. In this review, the use of natural sensitizers extracted from algae, cyanobacteria, bacteria, archaea, and fungi is assessed. The reported photoconversion efficiencies vary from 0.001 % to 4.6 % for sensitizers extracted from algae and microalgae, 0.004 to 1.67 % for bacterial sensitizers, 0.07-0.23 % for cyanobacteria, 0.09 to 0.049 % for archaea and 0.26-2.3 % for pigments from fungi.
Collapse
Affiliation(s)
- A Orona-Navar
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico
| | - I Aguilar-Hernández
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico.
| | - K D P Nigam
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico; Department of Chemical Engineering at Indian Institute of Technology, Delhi, India
| | - Andrea Cerdán-Pasarán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - N Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico.
| |
Collapse
|