1
|
Yu Z, Ma W, Ji H, Fan Y, Zhao W. Interaction mechanism of egg derived peptides RVPSL and QIGLF with dipalmitoyl phosphatidylcholine membrane: microcalorimetric and molecular dynamics simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6383-6393. [PMID: 37205773 DOI: 10.1002/jsfa.12714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Egg-derived peptides are becoming increasingly popular due to their biological activity and non-toxic effects. The egg-derived peptides Arg-Val-Pro-Ser-Leu (RVPSL) and Gln-Ile-Gly-Leu-Phe (QIGLF) display strong angiotensin-converting enzyme inhibitory activity and they can be taken up by intestinal epithelial cells. The interaction of the egg-derived peptides RVPSL and QIGLF with the membrane remains unclear. RESULTS The position and structure of the peptides in the membrane were calculated. The maximum density values of RVPSL and QIGLF were 2.27 and 1.22 nm from the center of the 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membrane, respectively, indicating that peptides penetrated the membrane-water interface and were embedded in the membrane. The interaction of RVPSL and QIGLF with the DPPC membrane did not affect the average area per lipid or the lipid sequence parameters. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between the peptide RVPSL with the DPPC membrane were 17.91 kJ mol-1 , -17.63 kJ mol-1 , 187.5 J mol-1 ·k-1 , respectively. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between peptide QIGLF with DPPC membrane were 17.10 kJ mol-1 , -17.12 kJ mol-1 , 114.8 J mol-1 ·k-1 , respectively. CONCLUSION The results indicated that the binding of peptides RVPSL and QIGLF to DPPC is an endothermic, spontaneous, and entropy-driven reaction. The results of the study are relevant to the problem of the low bioavailability of bioactive peptides (BP). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Wenhao Ma
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Huizhuo Ji
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Yue Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, P. R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| |
Collapse
|
2
|
Righetto GM, Lopes JLDS, Bispo PJM, André C, Souza JM, Andricopulo AD, Beltramini LM, Camargo ILBDC. Antimicrobial Activity of an Fmoc-Plantaricin 149 Derivative Peptide against Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12020391. [PMID: 36830301 PMCID: PMC9952790 DOI: 10.3390/antibiotics12020391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Antimicrobial resistance poses a major threat to public health. Given the paucity of novel antimicrobials to treat resistant infections, the emergence of multidrug-resistant bacteria renewed interest in antimicrobial peptides as potential therapeutics. This study designed a new analog of the antimicrobial peptide Plantaricin 149 (Pln149-PEP20) based on previous Fmoc-peptides. The minimal inhibitory concentrations of Pln149-PEP20 were determined for 60 bacteria of different species and resistance profiles, ranging from 1 mg/L to 128 mg/L for Gram-positive bacteria and 16 to 512 mg/L for Gram-negative. Furthermore, Pln149-PEP20 demonstrated excellent bactericidal activity within one hour. To determine the propensity to develop resistance to Pln149-PEP20, a directed-evolution in vitro experiment was performed. Whole-genome sequencing of selected mutants with increased MICs and wild-type isolates revealed that most mutations were concentrated in genes associated with membrane metabolism, indicating the most likely target of Pln149-PEP20. Synchrotron radiation circular dichroism showed how this molecule disturbs the membranes, suggesting a carpet mode of interaction. Membrane depolarization and transmission electron microscopy assays supported these two hypotheses, although a secondary intracellular mechanism of action is possible. The molecule studied in this research has the potential to be used as a novel antimicrobial therapy, although further modifications and optimization remain possible.
Collapse
Affiliation(s)
- Gabriela Marinho Righetto
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - José Luiz de Souza Lopes
- Laboratory of Applied Biophysics, Department of Applied Physics, Institute of Physics, University of São Paulo, São Paulo 05315-970, Brazil
| | - Paulo José Martins Bispo
- Department of Ophthalmology, Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Camille André
- Department of Ophthalmology, Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Medeiros Souza
- Laboratory of Medicinal and Computational Chemistry, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Leila Maria Beltramini
- Group of Biophysics and Structural Biology “Sérgio Mascarenhas”, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Ilana Lopes Baratella da Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
- Correspondence: ; Tel.: +55-(16)-3373-8654
| |
Collapse
|
3
|
Lopes JLS, Araujo CCF, Neves RC, Bürck J, Couto SG. Structural analysis of the peptides temporin-Ra and temporin-Rb and interactions with model membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:493-502. [PMID: 35978176 DOI: 10.1007/s00249-022-01615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The skin of amphibians is widely exploited as rich sources of membrane active peptides that differ in chain size, polypeptide net charge, secondary structure, target selectivity and toxicity. In this study, two small antimicrobial peptides, temporin-Ra and temporin-Rb, originally isolated from the skin of the European marsh frog (Rana ridibunda), described as active against pathogen bacteria and presenting low toxicity to eukaryotic cells were synthesized and had their physicochemical properties and mechanism of action investigated. The temporin peptides were examined in aqueous solution and in the presence of membrane models (lipid monolayers, micelles, lipid bilayers and vesicles). A combined approach of bioinformatics analyses, biological activity assays, surface pressure measurements, synchrotron radiation circular dichroism spectroscopy, and oriented circular dichroism spectroscopy were employed. Both peptides were able to adsorb at a lipid-air interface with a negative surface charge density, and efficiently disturb the lipid surface packing. A disorder-to-helix transition was observed on the secondary structure of both peptides when either in a non-polar environment or interacting with model membranes containing a negative net charge density. The binding of both temporin-Ra and temporin-Rb to membrane models is modulated by the presence of negatively charged lipids in the membrane. The amphipathic helix induced in temporin-Ra is oriented parallel to the membrane surface in negatively charged or in zwitterionic lipid bilayers, with no tendency for realignment after binding. Temporin-Rb, instead, assumes a β-sheet conformation when deposited into oriented stacked lipid bilayers. Due to their short size and simple composition, both peptides are quite attractive for the development of new classes of peptide-based anti-infective drugs.
Collapse
Affiliation(s)
- José L S Lopes
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, 05080-900, Brazil
| | - Caio C F Araujo
- Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rogério C Neves
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605050, Brazil
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Sheila G Couto
- Instituto de Física, Universidade Federal de Goiás, Av. Esperança, s/n - Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Evaluation of the antibacterial effects and mechanism of Plantaricin 149 from Lactobacillus plantarum NRIC 149 on the peri-implantitis pathogens. Sci Rep 2021; 11:21022. [PMID: 34697350 PMCID: PMC8545926 DOI: 10.1038/s41598-021-00497-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
Peri-implantitis is a common reversible disease after tooth implantation, caused by a variety of pathogenic microorganisms. Based on non-surgical or surgical treatment principles, supplementation by local or systemic drugs might enhance treatment efficacy. Porphyromonas gingivalis (Pg) (ATCC 33,277) and Prevotella intermedius (Pi) (ATCC 25,611) were used as test strains. The effects of Pln 149 on the biofilm formation and growth of four periodontal pathogens were evaluated by RT-PCR, fluorescence microscopy, and scanning electron microscopy. The antibacterial mechanism was tested by the patch-clamp technique. The cytotoxicity of Pln 149 (125 µg/ml) to bone marrow stromal cell (BMSC) was assessed using an MTT assay. Pln 149 exhibited significant inhibitory effects on Pg and Pi (P < 0.05), with significant differences in the biofilm images of fluorescence microscope and scanning electron microscope (P < 0.05). Pln 149 could change the sodium channel currents and exerted no cytotoxicity on bone marrow stromal cell. Pln 149 could inhibit the biofilm formation and growth of periodontal pathogens. Considering the absence of antimicrobial resistance and cytotoxicity, we suggest that the Pln 149 from Lactobacillus plantarum 149 might be a promising option for managing peri-implantitis.
Collapse
|
5
|
Study of the Interaction of a Novel Semi-Synthetic Peptide with Model Lipid Membranes. MEMBRANES 2020; 10:membranes10100294. [PMID: 33086635 PMCID: PMC7603383 DOI: 10.3390/membranes10100294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
Most linear peptides directly interact with membranes, but the mechanisms of interaction are far from being completely understood. Here, we present an investigation of the membrane interactions of a designed peptide containing a non-natural, synthetic amino acid. We selected a nonapeptide that is reported to interact with phospholipid membranes, ALYLAIRKR, abbreviated as ALY. We designed a modified peptide (azoALY) by substituting the tyrosine residue of ALY with an antimicrobial azobenzene-bearing amino acid. Both of the peptides were examined for their ability to interact with model membranes, assessing the penetration of phospholipid monolayers, and leakage across the bilayer of large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs). The latter was performed in a microfluidic device in order to study the kinetics of leakage of entrapped calcein from the vesicles at the single vesicle level. Both types of vesicles were prepared from a 9:1 (mol/mol) mixture of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1′-rac-glycerol). Calcein leakage from the vesicles was more pronounced at a low concentration in the case of azoALY than for ALY. Increased vesicle membrane disturbance in the presence of azoALY was also evident from an enzymatic assay with LUVs and entrapped horseradish peroxidase. Molecular dynamics simulations of ALY and azoALY in an anionic POPC/POPG model bilayer showed that ALY peptide only interacts with the lipid head groups. In contrast, azoALY penetrates the hydrophobic core of the bilayers causing a stronger membrane perturbation as compared to ALY, in qualitative agreement with the experimental results from the leakage assays.
Collapse
|
6
|
Della Pelle G, Perà G, Belardinelli MC, Gerdol M, Felli M, Crognale S, Scapigliati G, Ceccacci F, Buonocore F, Porcelli F. Trematocine, a Novel Antimicrobial Peptide from the Antarctic Fish Trematomus bernacchii: Identification and Biological Activity. Antibiotics (Basel) 2020; 9:E66. [PMID: 32041161 PMCID: PMC7168153 DOI: 10.3390/antibiotics9020066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short peptides active against a wide range of pathogens and, therefore, they are considered a useful alternative to conventional antibiotics. We have identified a new AMP in a transcriptome derived from the Antarctic fish Trematomus bernacchii. This peptide, named Trematocine, has been investigated for its expression both at the basal level and after in vivo immunization with an endemic Antarctic bacterium (Psychrobacter sp. TAD1). Results agree with the expected behavior of a fish innate immune component, therefore we decided to synthesize the putative mature sequence of Trematocine to determine the structure, the interaction with biological membranes, and the biological activity. We showed that Trematocine folds into a α-helical structure in the presence of both zwitterionic and anionic charged vesicles. We demonstrated that Trematocine has a highly specific interaction with anionic charged vesicles and that it can kill Gram-negative bacteria, possibly via a carpet like mechanism. Moreover, Trematocine showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against selected Gram-positive and Gram-negative bacteria similar to other AMPs isolated from Antarctic fishes. The peptide is a possible candidate for a new drug as it does not show any haemolytic or cytotoxic activity against mammalian cells at the concentration needed to kill the tested bacteria.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Giulia Perà
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Maria Cristina Belardinelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34128, Italy;
| | - Martina Felli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Silvia Crognale
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Francesca Ceccacci
- CNR—Institute for Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, 00185 Rome, Italy;
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| |
Collapse
|
7
|
Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10:2866. [PMID: 31921046 PMCID: PMC6927293 DOI: 10.3389/fmicb.2019.02866] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antibiotic crisis has led to a pressing need for alternatives such as antimicrobial peptides (AMPs). Recent work has shown that these molecules have great potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, anti-cancer agents and anti-inflammatories. A better understanding of the mechanism of action (MOA) of AMPs is an important part of the discovery of more potent and less toxic AMPs. Many models and techniques have been utilized to describe the MOA. This review will examine how biological assays and biophysical methods can be utilized in the context of the specific antibacterial and antibiofilm functions of AMPs.
Collapse
Affiliation(s)
- Nigare Raheem
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|