1
|
Kämäräinen T, Nakayama Y, Uchiyama H, Tozuka Y, Kadota K. Amyloid Nanofibril-Assisted Spray Drying of Crumpled Supraparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309645. [PMID: 38716922 DOI: 10.1002/smll.202309645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/19/2024] [Indexed: 10/04/2024]
Abstract
Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, β-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuzuki Nakayama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
2
|
Santos TP, Calabrese V, Boehm MW, Baier SK, Shen AQ. Flow-induced alignment of protein nanofibril dispersions. J Colloid Interface Sci 2023; 638:487-497. [PMID: 36758259 DOI: 10.1016/j.jcis.2023.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
HYPOTHESIS Protein nanofibrils (PNF) resulting from the self-assembly of proteins or peptides can present structural ordering triggered by numerous factors, including the shear flow. We hypothesize that i) depending on the contour length of the PNF and the magnitude of the shear rate applied to the PNF dispersion, they exhibit specific orientation, and ii) it is possible to predict the alignment of PNF by establishing a flow-alignment relationship. Understanding such a relationship is pivotal to improving the fundamental knowledge and application of fibril systems. EXPERIMENTS We use β-lactoglobulin PNF aqueous dispersions with different average contour lengths but equal persistence lengths. We employ simple shear-dominated microfluidic devices with state-of-the-art imaging techniques: flow-induced birefringence (FIB) and micro-particle image velocimetry (μ-PIV), to probe the effect of shear flow on PNF alignment. FINDINGS We provide an empirical relationship connecting the birefringence Δn (quantifying the extent of PNF alignment), and the Péclet number Pe (correlating the shear rate of the flow relative to the rotational diffusion of PNF) to understand the flow-alignment behavior of PNF under shear-dominated flows. Furthermore, we assess the alignment and flow profile of PNF at both high and low flow rates. The length of PNF emerges as a controlling parameter capable of modulating PNF alignment at specific shear rates. Our results shed new insights into the hydrodynamic behavior of PNF, which is highly relevant to various industrial processes involving the fibril systems.
Collapse
Affiliation(s)
- Tatiana P Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | - Stefan K Baier
- Motif FoodWorks, Inc., Boston, MA, USA; The University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
3
|
Gao K, Lian H, Xue C, Zhou J, Yan X. High-Throughput Counting and Sizing of Therapeutic Protein Aggregates in the Nanometer Size Range by Nano-Flow Cytometry. Anal Chem 2022; 94:17634-17644. [PMID: 36474427 DOI: 10.1021/acs.analchem.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein aggregation is one of the greatest challenges in biopharmaceuticals as it could decrease therapeutic efficacy, induce immunogenicity, and reduce shelf life of protein drugs. However, there lacks high-throughput methods than can count and size protein aggregates in the nanometer size range, especially for those smaller than 100 nm. Employing a laboratory-built nano-flow cytometer (nFCM) that enables light scattering detection of single silica nanoparticles as small as 24 nm with sizing resolution and accuracy comparable to those of electron microscopy, here, we report a new benchmark to analyze single protein aggregates as small as 40 nm. With an analysis rate of up to 10,000 particles/min, the size distribution and particle concentration of nanometer protein aggregates can be acquired in 2-3 min. Employing heat-induced aggregation of bovine serum albumin (BSA) at high concentrations as the model system, effects of different categories of excipients, including sugars, polyols, salts, and amino acids on the inhibition of protein aggregation were investigated. Strikingly enough, as high as 1010 to 1012 particles/mL of protein aggregates were observed in the size range of 40 to 200 nm for therapeutic proteins of human serum albumin injection, reconstituted recombinant human interieukin-2 solution, and human immunoglobulin injection. nFCM opens a new avenue to count and size nanometer protein aggregates, suggesting its future usability in the quality assessment and formulation promotion of therapeutic proteins.
Collapse
Affiliation(s)
- Kaimin Gao
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Hong Lian
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jing Zhou
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
4
|
Hoppenreijs L, Fitzner L, Ruhmlieb T, Heyn T, Schild K, van der Goot AJ, Boom R, Steffen-Heins A, Schwarz K, Keppler J. Engineering amyloid and amyloid-like morphologies of β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
|
6
|
Analytical ultracentrifugation: still the gold standard that offers multiple solutions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 49:673-676. [PMID: 33211149 DOI: 10.1007/s00249-020-01483-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the nature of macromolecules and their interactions in solution underpins many fields, including biology, chemistry and materials science. The 24th International Analytical Ultracentrifugation Workshop and Symposium (AUC2019, held in Christchurch, New Zealand, August 2019), brought together 77 international delegates to highlight recent developments in the field. There was a focus on analytical ultracentrifugation, although we recognise that this is but one of the key methods in the biophysicist's toolkit. Many of the presentations showcased the versatility of analytical ultracentrifugation and how such experiments are integrated with other solution techniques, such as small-angle X-ray scattering, cryo-electron microscopy, isothermal titration calorimetry and more. This special issue emphasises a wide range of themes covered in the meeting, including carbohydrate chemistry, protein chemistry, polymer science, and macromolecular interactions.
Collapse
|
7
|
Uttinger MJ, Jung D, Dao N, Canziani H, Lübbert C, Vogel N, Peukert W, Harting J, Walter J. Probing sedimentation non-ideality of particulate systems using analytical centrifugation. SOFT MATTER 2021; 17:2803-2814. [PMID: 33554981 DOI: 10.1039/d0sm01805h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analytical centrifugation is a versatile technique for the quantitative characterization of colloidal systems including colloidal stability. The recent developments in data acquisition and evaluation allow the accurate determination of particle size, shape anisotropy and particle density. High precision analytical centrifugation is in particular suited for the study of particle interactions and concentration-dependent sedimentation coefficients. We present a holistic approach for the quantitative determination of sedimentation non-ideality via analytical centrifugation for polydisperse, plain and amino-functionalized silica particles spanning over one order of magnitude in particle size between 100 nm and 1200 nm. These systems typically behave as neutral hard spheres as predicted by auxiliary lattice Boltzmann simulations. The extent of electrostatic interactions and their impact on sedimentation non-ideality can be quantified by the repulsion range, which is the ratio of the Debye length and the average interparticle distance. Experimental access to the repulsion range is provided through conductivity measurements. With the experimental repulsion range at hand, we estimate the effect of polydispersity on concentration-dependent sedimentation properties through a combination of lattice Boltzmann and Brownian dynamics simulations. Finally, we determine the concentration-dependent sedimentation properties of charge-stabilized, fluorescently-labeled silica particles with a nominal particle size of 30 nm and reduced interparticle distance, hence an elevated repulsion range. Overall, our results demonstrate how the influence of hard-sphere type and electrostatic interactions can be quantified when probing sedimentation non-ideality of particulate systems using analytical centrifugation even for systems exhibiting moderate sample heterogeneity and complex interactions.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - D Jung
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
| | - N Dao
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - H Canziani
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - C Lübbert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - N Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - W Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - J Harting
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany and Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| | - J Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Keppler JK, Heyse A, Scheidler E, Uttinger MJ, Fitzner L, Jandt U, Heyn TR, Lautenbach V, Loch JI, Lohr J, Kieserling H, Günther G, Kempf E, Grosch JH, Lewiński K, Jahn D, Lübbert C, Peukert W, Kulozik U, Drusch S, Krull R, Schwarz K, Biedendieck R. Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106132] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|