1
|
Almena Rodriguez L, Kallert E, Husmann JÅ, Schaubruch K, Meisel KIS, Schwickert M, Hoba SN, Heermann R, Kersten C. Electrostatic Anchoring in RNA-Ligand Design─Dissecting the Effects of Positive Charges on Affinity, Selectivity, Binding Kinetics, and Thermodynamics. J Med Chem 2025; 68:8659-8678. [PMID: 40191889 PMCID: PMC12035807 DOI: 10.1021/acs.jmedchem.5c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Targeting RNA with small molecules is an emerging field in medicinal chemistry. However, highly potent ligands are often challenging to achieve. One intuitive strategy to enhance ligand's potency is the implementation of positively charged moieties to interact with the negatively charged RNA phosphate backbone. We investigated the effect of such "electrostatic anchors" on binding affinity, kinetics, thermodynamics, and selectivity by MST, SPR, and ITC experiments, respectively, with the Ba SAM-VI riboswitch and the Tte preQ1 riboswitch aptamer model systems. RNA-ligand interactions were dominated by enthalpy, and electrostatic anchors had moderate effects on binding affinity driven by faster association rates for higher charged ligands. Despite the observations of loose binding interactions in SPR experiments with multibasic ligands, selectivity over structurally unrelated RNA off-targets was maintained. Therefore, the addition of positively charged moieties is no universal RNA-ligand design principle, but a purposefully implemented ionic RNA-ligand interaction can enhance potency without impairing selectivity.
Collapse
Affiliation(s)
- Laura Almena Rodriguez
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Elisabeth Kallert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Jan-Åke Husmann
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Kirsten Schaubruch
- Institute
of Molecular Physiology, Microbiology and Biotechnology, Johannes
Gutenberg-University, Hanns-DieterHüsch-Weg 17, 55128 Mainz, Germany
| | - Katherina I. S. Meisel
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Marvin Schwickert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Sabrina N. Hoba
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Ralf Heermann
- Institute
of Molecular Physiology, Microbiology and Biotechnology, Johannes
Gutenberg-University, Hanns-DieterHüsch-Weg 17, 55128 Mainz, Germany
| | - Christian Kersten
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
- Institute
for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch
Weg 15, 55128 Mainz, Germany
| |
Collapse
|
2
|
Hammerschmidt SJ, Maus H, Weldert AC, Gütschow M, Kersten C. Improving binding entropy by higher ligand symmetry? - A case study with human matriptase. RSC Med Chem 2023; 14:969-982. [PMID: 37252099 PMCID: PMC10211324 DOI: 10.1039/d3md00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
3
|
Hammerschmidt SJ, Huber S, Braun NJ, Lander M, Steinmetzer T, Kersten C. Thermodynamic characterization of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its acyclic analogs. Arch Pharm (Weinheim) 2022; 356:e2200518. [PMID: 36480352 DOI: 10.1002/ardp.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
England P, Jowitt TA. Community-building and promotion of technological excellence in molecular biophysics: the ARBRE-MOBIEU network. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:307-311. [PMID: 34057541 DOI: 10.1007/s00249-021-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Patrick England
- Molecular Biophysics Facility, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris cedex 15, France.
| | - Thomas A Jowitt
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|