1
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
2
|
Toni Ho GG, Heinen F, Stieglitz F, Blasczyk R, Bade-Döding C. Dynamic Interaction between Immune Escape Mechanism and HLA-Ib Regulation. Immunogenetics 2019. [DOI: 10.5772/intechopen.80731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Bieling M, Tischer S, Kalinke U, Blasczyk R, Buus S, Maecker-Kolhoff B, Eiz-Vesper B. Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: Evaluation of novel naturally processed and presented EBV-derived T-cell epitopes. Oncotarget 2017; 9:4737-4757. [PMID: 29435138 PMCID: PMC5797009 DOI: 10.18632/oncotarget.23531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023] Open
Abstract
Morbidity and mortality of immunocompromised patients are increased by primary infection with or reactivation of Epstein-Barr virus (EBV), possibly triggering EBV+ post-transplant lymphoproliferative disease (PTLD). Adoptive transfer of EBV-specific cytotoxic T cells (EBV-CTLs) promises a non-toxic immunotherapy to effectively prevent or treat these complications. To improve immunotherapy and immunomonitoring this study aimed at identifying and evaluating naturally processed and presented HLA-A*03:01-restricted EBV-CTL epitopes as immunodominant targets. More than 15000 peptides were sequenced from EBV-immortalized B cells transduced with soluble HLA-A*03:01, sorted using different epitope prediction tools and eleven candidates were preselected. T2 and Flex-T peptide-binding and dissociation assays confirmed the stability of peptide-MHC complexes. Their immunogenicity and clinical relevance were evaluated by assessing the frequencies and functionality of EBV-CTLs in healthy donors (n > 10) and EBV+ PTLD-patients (n = 5) by multimer staining, Eli- and FluoroSpot assays. All eleven peptides elicited EBV-CTL responses in the donors. Their clinical applicability was determined by small-scale T-cell enrichment using Cytokine Secretion Assay and immunophenotyping. Mixtures of these peptides when added to the EBV Consensus pool revealed enhanced stimulation and enrichment efficacy. These EBV-specific epitopes broadening the repertoire of known targets will improve manufacturing of clinically applicable EBV-CTLs and monitoring of EBV-specific T-cell responses in patients.
Collapse
Affiliation(s)
- Maren Bieling
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| | - Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| | - Ulrich Kalinke
- Division of Experimental Infection Research, TWINCORE, Centre of Experimental and Clinical Infection Research, MHH, Hanover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany.,Department of Pediatric Hematology and Oncology, MHH, Hanover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany.,Integrated Research and Treatment Center (IFB-Tx), MHH, Hanover, Germany
| |
Collapse
|
4
|
Manandhar T, Kunze-Schumacher H, Huyton T, Celik AA, Blasczyk R, Bade-Doeding C. Understanding the obstacle of incompatibility at residue 156 within HLA-B*35 subtypes. Immunogenetics 2016; 68:247-60. [PMID: 26758079 PMCID: PMC4799800 DOI: 10.1007/s00251-015-0896-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/23/2015] [Indexed: 01/22/2023]
Abstract
Defining permissive and non-permissive mismatches for transplantation is a demanding challenge. Single mismatches at amino acid (AA) position 156 of human leucocyte antigen (HLA) class I have been described to alter the peptide motif, repertoire, or mode of peptide loading through differential interaction with the peptide-loading complex. Hence, a single mismatch can tip the balance and trigger an immunological reaction. HLA-B*35 subtypes have been described to evade the loading complex, 156 mismatch distinguishing B*35:01 and B*35:08 changes the binding groove sufficiently to alter the sequence features of the selected peptide repertoire. To understand the functional influences of residue 156 in B*35 variants, we analyzed the peptide binding profiles of HLA-B*35:01156Leu, B*35:08156Arg and B*35:62156Trp. The glycoprotein tapasin represents a target for immune evasions and functions within the multimeric peptide-loading complex to stabilize empty class I molecules and promote acquisition of high-affinity peptides. All three B*35 subtypes showed a tapasin-independent mode of peptide acquisition. HLA-B*35-restricted peptides of low- and high-binding affinities were recovered in the presence and absence of tapasin and subsequently sequenced utilizing mass spectrometry. The peptides derived from B*35 variants differ substantially in their features dependent on their mode of recruitment; all peptides were preferentially anchored by Pro at p2 and Tyr, Phe, Leu, or Lys at pΩ. However, the Trp at residue 156 altered the p2 motif to an Ala and restricted the pΩ to a Trp. Our results highlight the importance of understanding the impact of key micropolymorphism and how a single AA mismatch orchestrates the neighboring AAs.
Collapse
Affiliation(s)
- Trishna Manandhar
- Hannover Medical School, Institute for Transfusion Medicine, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Heike Kunze-Schumacher
- Hannover Medical School, Institute for Transfusion Medicine, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Trevor Huyton
- Hannover Medical School, Institute for Transfusion Medicine, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Alexander A Celik
- Hannover Medical School, Institute for Transfusion Medicine, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Rainer Blasczyk
- Hannover Medical School, Institute for Transfusion Medicine, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Christina Bade-Doeding
- Hannover Medical School, Institute for Transfusion Medicine, Feodor-Lynen-Str. 5, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Celik AA, Kraemer T, Huyton T, Blasczyk R, Bade-Döding C. The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch. Immunogenetics 2016; 68:29-41. [PMID: 26552660 PMCID: PMC4701785 DOI: 10.1007/s00251-015-0880-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
Human leukocyte antigen (HLA)-E molecules are potent inhibitors of NK cell-mediated killing. Low in polymorphisms, two alleles are widely expressed among diverse populations: HLA-E*01:01 and HLA-E*01:03. Both alleles are distinguished by one SNP resulting in the substitution Arg107Gly. Both alleles present a limited set of peptides derived from class I leader sequences physiologically; however, HLA-E*01:01 presents non-canonical peptides in the absence of HLA class I molecules. To further assess the functional differences between both alleles, we analyzed the peptide repertoire of HLA-E*01:03 by applying soluble HLA technology followed by mass-spectrometric peptide sequencing. HLA-E*01:03 restricted peptides showed a length of 9-17 amino acids and differed in their biophysical properties, no overlap in the peptide repertoire of both allelic variants could be observed; however, both alleles shared marginal peptides from the same proteomic content. Artificial APCs expressing empty HLA-E*01:01 or E*01:03 molecules were generated and stabilized using cognate HLA class I-derived peptide ligands to analyze the impact of residue 107 within the HLA-E heavy chain on the NKG2/CD94 receptor engagement. Differences in peptide stabilization could be translated to the density and half-life time of peptide-HLA-E molecules on the cell surface that subsequently impacted NK cell inhibition as verified by cytotoxicity assays. Taken together, these data illustrate functional differences of HLA-E allelic variants induced by a single amino acid. Furthermore, the function of HLA-E in pathophysiologic situations when the HLA processing machinery is interrupted seems to be more emphasized than previously described, implying a crucial role for HLA-E in tumor or viral immune episodes.
Collapse
Affiliation(s)
- Alexander A Celik
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Trevor Huyton
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - Christina Bade-Döding
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625, Hannover, Germany.
| |
Collapse
|
6
|
HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome. Stem Cells Int 2015; 2015:346714. [PMID: 26366178 PMCID: PMC4549550 DOI: 10.1155/2015/346714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire.
To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection.
Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.
Collapse
|
7
|
Föll D, Hinrichs J, Tischer S, Battermann A, Schambach A, Figueiredo C, Immenschuh S, Blasczyk R, Eiz-Vesper B. Closing the gap: discrimination of the expression profile of HLA questionable alleles by a cytokine-induced secretion approach using HLA-A*32:11Q. ACTA ACUST UNITED AC 2012; 79:340-50. [PMID: 22489943 DOI: 10.1111/j.1399-0039.2012.01864.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matching of human leukocyte antigen (HLA) alleles between donors and recipients plays a major role in hematopoietic stem cell transplantation (HSCT). Null or questionably expressed HLA allelic variants are a major issue in HLA matching, because the aberrant expression of such alleles can have a major impact on the outcome of HSCT and/or its complications such as graft-versus-host disease. The goal of this study was to investigate the potential of a recently developed cytokine-induced secretion assay to differentiate the expression levels of HLA-A*32:11Q (questionable) into a null (N) or low (L) expression variant. An amino acid mutation at position 164 of HLA-A*32:11Q disrupts the disulfide bridge in the α2 domain. HLA-A*32:11Q is not detectable by standard microlymphocytotoxicity assay. To this end, we cloned soluble HLA-A*32:11Q and a reference allele (HLA-A*32:01) into expression vectors and transfected/transduced HEK293 and K562 cells. Allele-expressing K562 cells were simultaneously transfected/transduced with a β2-microglobulin (B2M)-encoding vector to ensure the intact HLA structure with B2M. After treatment with proinflammatory cytokines, secreted soluble HLA molecules were determined by enzyme-linked immunosorbent assay in the supernatant and intracellular accumulation of the recombinant proteins by flow cytometry. HLA-A*32:11Q was nearly undetectable in untreated transfectants. Cytokine treatment increased the secretion of HLA-A*32:11Q to detectable levels and resulted in intracellular accumulation of the allele. There was no difference in mRNA transcription between the A*32 alleles. On the basis of these results, we recommend reclassification of HLA-A*32:11Q as a low expression (L) variant.
Collapse
Affiliation(s)
- D Föll
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huyton T, Ladas N, Schumacher H, Blasczyk R, Bade-Doeding C. Pocketcheck: updating the HLA class I peptide specificity roadmap. ACTA ACUST UNITED AC 2012; 80:239-48. [PMID: 22803829 DOI: 10.1111/j.1399-0039.2012.01928.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 05/04/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
Abstract
The structural determination of peptide:HLA (human leucocyte antigen) class I complexes by X-ray crystallography has provided valuable information for understanding how peptides bind to individual HLA class I molecules and how this may influence the immune response. We compared 101 crystal structures of 9-mer peptide:HLA class I complexes available in the protein data bank (PDB) by performing a contact analysis using the Contact Map Analysis webserver http://ligin.weizmann.ac.il/cma. An InterSystems Caché 'post-relational' database containing residue position, amino acid (AA) and buried surface that contact a particular peptide position was then created allowing data comparison for all the structures (Pocketcheck). The analysis illustrates that the HLA class I residues 24, 45, 63 and 67 show high contact frequencies to both the p1 and/or p2 position of bound peptides, indicating that they might influence the nature of a peptide anchor. To determine the influence of these residues we utilized soluble HLA technology and mass spectrometry to analyze peptides derived from HLA-B*44:06 since it differs from the previously described allele B*44:02 by seven AA exchanges located in the alpha 1 domain (residues 24, 32, 41, 45, 63, 67 and 80). HLA-B*44:06 features an anchor motif of P or A at p2 and Y or W at the C-terminal. Additionally B*44:06-derived peptides feature an auxiliary anchor motif at p1, comprising D or E. Our results illustrate that structural analysis can provide valuable information to understand allogenicity and provides a further step towards intelligent HLA mismatching.
Collapse
Affiliation(s)
- T Huyton
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
9
|
Huyton T, Schumacher H, Blasczyk R, Bade-Doeding C. Residue 81 confers a restricted C-terminal peptide binding motif in HLA-B*44:09. Immunogenetics 2012; 64:663-8. [PMID: 22706990 DOI: 10.1007/s00251-012-0625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/30/2012] [Indexed: 02/07/2023]
Abstract
Knowledge about the magnitude of individual polymorphism is a critical part in understanding the complexity of comprehensive mismatching. HLA-B*44:09 differs from the highly frequent HLA-B*44:02 allele by amino acid exchanges at residues 77, 80, 81, 82 and 83. We aimed to identify the magnitude of these mismatches on the features of HLA-B*44:09 bound peptides since residues 77, 80 and 81 comprise part of the F pocket which determines sequence specificity at the pΩ position of the peptide. Using soluble HLA technology we determined >200 individual (nonduplicate) self-peptides from HLA-B*44:09 and compared their features with that of the published peptide features of HLA-B*44:02. Both alleles illustrate an anchor motif of E at p2. In contrast to the C-terminal peptide binding motif of B*44:02 (W, F, Y or L), B*44:09-derived peptides are restricted predominantly to L or F. The source of peptides for both alleles is identical (LCL 721.221 cells) allowing us to identify 23 shared peptides. The majority of these peptides however contained the restricted B*44:09 anchor motif of F or L at the pΩ position. Molecular modelling based on the B*44:02 structure highlights that the differences of the C-terminal peptide anchor between both alleles can be explained primarily by the B*44:02(81Ala) > B*44:09(81Leu) polymorphism which restricts the size of the amino acid that can be accommodated in the F pocket of B*44:09. These results highlight that every amino acid substitution has an impact of certain magnitude on the alleles function and demonstrate how surrounding residues orchestrate peptide specificity.
Collapse
Affiliation(s)
- Trevor Huyton
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
10
|
Badrinath S, Huyton T, Schumacher H, Blasczyk R, Bade-Doeding C. Position 45 influences the peptide binding motif of HLA-B*44:08. Immunogenetics 2011; 64:245-9. [PMID: 22009320 DOI: 10.1007/s00251-011-0583-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/10/2011] [Indexed: 01/30/2023]
Abstract
Position 45 represents a highly polymorphic residue within HLA class I alleles, which contacts the p2 position of bound peptides in 85% of the peptide-HLA structures analyzed, while the neighboring residues 41 and 46 are not involved in peptide binding. To investigate the influence of residue 45 at the functional level, we sequenced peptides eluted from recombinant HLA-B*44:08(41Ala/45Met/46Ala) molecules and compared their features with known peptides from B*44:02(41Thr/45Lys/46Glu). While HLA-B*44:02 has an anchor motif of E at the p2 anchor position, HLA-B*44:08 exhibits Q and L as anchor motif. The 45(Met/Lys) polymorphism contributes to the alteration in the peptide-binding motif and provides further evidence that mismatches at position 45 should be considered as nonpermissive in a transplantation setting.
Collapse
Affiliation(s)
- Soumya Badrinath
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | | | | | | |
Collapse
|
11
|
Bade-Doeding C, Cano P, Huyton T, Badrinath S, Eiz-Vesper B, Hiller O, Blasczyk R. Mismatches outside exons 2 and 3 do not alter the peptide motif of the allele group B*44:02P. Hum Immunol 2011; 72:1039-44. [PMID: 21872626 DOI: 10.1016/j.humimm.2011.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/31/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Sequence variations outside exons 2 and 3 do not appear to affect the function of human leukocyte antigen (HLA) class I alleles. HLA-B*44:02:01:01 and -B*44:27 are considered functionally identical because they differ by a single amino acid substitution of Val > Ala at position 199, which is located in the α3 domain. To validate that HLA-B*44:02:01:01 and -B*44:27 represent functionally identical alleles that might reflect a permissive mismatch in hematopoetic stem cell transplantation (HSCT), we determined their peptide-binding features. B-lymphoblastic cells were lentivirally transduced with B*44:02 and B*44:27 constructs and soluble recombinant molecules were purified by affinity chromatography. Peptides were isolated and sequencing of single peptides was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LTQ-Orbitrap) technology. We demonstrate that the peptide motif of B*44:02(199Val) and B*44:27(199Ala) is identical. Both variants feature E at P2 and Y, F, or W at PΩ in their ligands. Most of the identified peptides are 9 to 11 amino acids in length and approximately 20% of these ligands are shared between the alleles. Our results lead to the conclusion that B*44:02:01:01 and B*44:27 might have the same immune function, validating a theory that is now being used in deciding which donors to select in HSCT when there is no identical donor available.
Collapse
|
12
|
Bade-Doeding C, Huyton T, Eiz-Vesper B, Blasczyk R. The composition of the F pocket in HLA-A*74 generates C-terminal promiscuity among its bound peptides. ACTA ACUST UNITED AC 2011; 78:378-81. [PMID: 21762397 DOI: 10.1111/j.1399-0039.2011.01745.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this study we sequenced the bound peptides from three alleles belonging to the HLA-A*74 group (HLA-A*74:04, A*74:06 and A*74:07) that are distinguished by four polymorphic residues within the peptide-binding region. Our data illustrates that A*74:04 exhibits preference for L, M or I at P2 and L, S or P at PΩ, while for A*74:07 the P2 anchor prefers L, P or I and the PΩ anchor S, P, L. In contrast A*74:06 features a P2 anchor motif of S or L, while a PΩ anchor could not be defined; however, a preference for polar residues S, T, Q or the charged residue R at the PΩ position could be detected.
Collapse
Affiliation(s)
- C Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| | | | | | | |
Collapse
|
13
|
Bajor A, Tischer S, Figueiredo C, Wittmann M, Immenschuh S, Blasczyk R, Eiz-Vesper B. Modulatory role of calreticulin as chaperokine for dendritic cell-based immunotherapy. Clin Exp Immunol 2011; 165:220-34. [PMID: 21635227 DOI: 10.1111/j.1365-2249.2011.04423.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heat shock proteins (HSPs) play a regulatory role for maturation of antigen-presenting cells (APCs) such as dendritic cells (DCs) and macrophages. Whereas HSP70 has been shown to enhance the maturation of human DCs via a nuclear factor kappa-B (NF-κB)-dependent pathway, the regulatory role of calreticulin (CRT), which is a HSP with similar functions to HSP70, is not well studied. To investigate the role of CRT as adjuvant in cell activation and co-stimulatory responses we determined the effects of CRT on human APC maturation in comparison to that of HSP70. To facilitate eukaryotic endotoxin-free CRT protein expression, three different methods were compared. We demonstrate that CRT induces the maturation of human DCs and increases the production of proinflammatory cytokines via the NF-κB pathway. CRT-mediated maturation was qualitatively similar to that induced by HSP70. Interestingly, priming of monocytes with HSPs showed an even more prominent effect on maturation than exposure of immature DCs to these compounds. A higher expression of CD86, CD83 and CCR7 on mature DCs were found in response to CRT. Our data provide novel insights into the role of extracellular HSPs as chaperokines in the processes of APC generation and may thus be useful to improve adoptive immunotherapy.
Collapse
Affiliation(s)
- A Bajor
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc Natl Acad Sci U S A 2011; 108:6981-6. [PMID: 21478437 DOI: 10.1073/pnas.1018165108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class I major histocompatibility complex proteins play a critical role in the adaptive immune system by binding to peptides derived from cytosolic proteins and presenting them on the cell surface for surveillance by T cells. The varied peptide binding specificity of these highly polymorphic molecules has important consequences for vaccine design, transplantation, autoimmunity, and cancer development. Here, we describe a molecular modeling study of MHC-peptide interactions that integrates sampling techniques from protein-protein docking, loop modeling, de novo structure prediction, and protein design in order to construct atomically detailed peptide binding landscapes for a diverse set of MHC proteins. Specificity profiles derived from these landscapes recover key features of experimental binding profiles and can be used to predict peptide binding with reasonable accuracy. Family wide comparison of the predicted binding landscapes recapitulates previously reported patterns of specificity divergence and peptide-repertoire diversity while providing a structural basis for observed specificity patterns. The size and sequence diversity of these structure-based binding landscapes enable us to identify subtle patterns of covariation between peptide sequence positions; analysis of the associated structural models suggests physical interactions that may mediate these sequence correlations.
Collapse
|
15
|
Elamin NE, Bade-Doeding C, Blasczyk R, Eiz-Vesper B. Polymorphism between HLA-A*0301 and A*0302 located outside the pocket F alters the PΩ peptide motif. ACTA ACUST UNITED AC 2011; 76:487-90. [PMID: 20707881 DOI: 10.1111/j.1399-0039.2010.01547.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human leukocyte antigen (HLA)-A*03 group has more than 90 known members and is one of the largest families of HLA class I alleles, with the most common variant being HLA-A*0301. In this study, we determined the peptide-binding motif of the highly frequent Sudanese allele A*0302 and compared it with the previously published peptide-binding motif of A*0301. The two alleles differ only at two distinct residues Glu152Val and Leu156Gln, which are predicted to be part of specificity pockets D, C and E and thus in contact with the peptide. Soluble recombinant A*0302 was expressed, affinity purified and the bound peptides were then eluted and analysed by mass spectrometry. The peptide-binding motif of A*0302 differs significantly from the previously published HLA-A*0301 and the Glu152Val/Leu156Gln mismatches appear to have a significant impact on the peptide-binding features of A*0302 and A*0301.
Collapse
Affiliation(s)
- N E Elamin
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
16
|
Bade-Döding C, Theodossis A, Gras S, Kjer-Nielsen L, Eiz-Vesper B, Seltsam A, Huyton T, Rossjohn J, McCluskey J, Blasczyk R. The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family. Haematologica 2010; 96:110-8. [PMID: 20934997 DOI: 10.3324/haematol.2010.030924] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. DESIGN AND METHODS We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to a natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. RESULTS Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal pΩ anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. CONCLUSIONS Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide-HLA complexes.
Collapse
|
17
|
Hinrichs J, Föll D, Bade-Döding C, Huyton T, Blasczyk R, Eiz-Vesper B. The nature of peptides presented by an HLA class I low expression allele. Haematologica 2010; 95:1373-80. [PMID: 20220067 DOI: 10.3324/haematol.2009.016089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The functional integrity of human leukocyte antigen low expression variants is a prerequisite for considering them as essential in the matching process of hematopoietic stem cell donors and recipients to diminish the risk of serious complications such as graft-versus-host disease or graft rejection. The HLA-A*3014L variant has a disulfide bridge missing in the alpha2 domain which could affect peptide binding and presentation to T cells. DESIGN AND METHODS HLA-A*3014L and HLA-A*3001 were expressed as truncated variants and peptides were eluted and subjected to pool sequencing by Edman degradation as well as to single-peptide sequencing by mass spectrometry. Quantitative analysis of binding peptides presented in vivo was performed by a flow cytometric peptide-binding assay using HLA-A*3001 and HLA-A*3014L-expressing B-LCLs. RESULTS The truncated HLA-A*3014L protein was secreted in the supernatant and it was possible to elute and sequence peptides. Sequence analysis of these eluted peptides revealed no relevant differences to the peptide motif of HLA-A*3001, indicating that the Cys164Ser substitution does not substantially alter the spectrum of presented peptides. Strong binding of one of the shared in vivo identified HLA-A*3001/3014L ligands was confirmed in the peptide-binding assay. CONCLUSIONS This study is the first to demonstrate that HLA low expression variants are able to present peptides and, thus, can be considered as functionally active. When comparing peptide motifs, it is likely that HLA-A*3014L and HLA-A*3001 represent a permissive mismatch with low allogenicity in hematopoietic stem cell transplantation. These results indicate that surface expression, as well as peptide-binding data of HLA variants with similar disulfide bridge variations (e.g. HLA-A*3211Q) need to be considered as functionally active in an allogeneic hematopoietic stem cell transplantation setting as long as the opposite has not been shown. Otherwise a relevant but not considered HLA mismatch could result in a severe allogeneic T-cell response and graft-versus-host disease.
Collapse
Affiliation(s)
- Jan Hinrichs
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Discrimination of HLA null and low expression alleles by cytokine-induced secretion of recombinant soluble HLA. Mol Immunol 2009; 46:1451-7. [DOI: 10.1016/j.molimm.2008.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/08/2008] [Accepted: 12/16/2008] [Indexed: 11/24/2022]
|
19
|
Bade-Doeding C, DeLuca DS, Seltsam A, Blasczyk R, Eiz-Vesper B. Amino acid 95 causes strong alteration of peptide position Pomega in HLA-B*41 variants. Immunogenetics 2007; 59:253-9. [PMID: 17294180 DOI: 10.1007/s00251-007-0197-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 01/08/2007] [Indexed: 11/24/2022]
Abstract
There have been several attempts over the years to identify positions in the peptide-binding region (PBR) of human leukocyte antigens (HLA) that influence the specificity of bound amino acids (AAs) at each position in the peptide. Originally, six pockets (A-F) were defined by calculating the surface area of the PBR on the crystal structure of HLA-A2 molecules. More recent crystallographic analyses of a variety of HLA alleles have led to broader pocket definitions. In this study, we examined the peptide-binding specificity of HLA-B*41 alleles and compared our results with the available pocket definitions. By generating recombinant HLA-B molecules and studying the eluted peptides by mass spectrometry and pool sequencing, we detected two different POmega peptide motifs within the B*41 group: Leu vs Val/Pro. Specificity was dependent on the presence of Leu (B*4102, B*4103, and B*4104) vs Trp (B*4101, B*4105, and B*4106) at AA position 95 in the HLA molecule, whose impact on POmega has been a subject of controversy in current pocket definitions. In contrast, the Arg97Ser mutation did not affect pocket F binding specificity in B*41 subtypes although residue 97 was previously identified as a modulator of peptide binding for several HLA class I alleles. According to most pocket definitions, this study shows that the Asn80Lys substitution in B*4105 impels the peptide's POmega anchor toward more promiscuity. Our sequencing results of peptides eluted from HLA-B*41 variants demonstrate the limitations of current pocket definitions and underline the need for an extended peptide motif database for improved understanding of peptide-major histocompatibility complex interactions.
Collapse
|
20
|
DeLuca DS, Khattab B, Blasczyk R. A modular concept of HLA for comprehensive peptide binding prediction. Immunogenetics 2006; 59:25-35. [PMID: 17119951 DOI: 10.1007/s00251-006-0176-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/25/2006] [Indexed: 11/26/2022]
Abstract
A variety of algorithms have been successful in predicting human leukocyte antigen (HLA)-peptide binding for HLA variants for which plentiful experimental binding data exist. Although predicting binding for only the most common HLA variants may provide sufficient population coverage for vaccine design, successful prediction for as many HLA variants as possible is necessary to understand the immune response in transplantation and immunotherapy. However, the high cost of obtaining peptide binding data limits the acquisition of binding data. Therefore, a prediction algorithm, which applies the binding information from well-studied HLA variants to HLA variants, for which no peptide data exist, is necessary. To this end, a modular concept of class I HLA-peptide binding prediction was developed. Accurate predictions were made for several alleles without using experimental peptide binding data specific to those alleles. We include a comparison of module-based prediction and supertype-based prediction. The modular concept increased the number of predictable alleles from 15 to 75 of HLA-A and 12 to 36 of HLA-B proteins. Under the modular concept, binding data of certain HLA alleles can make prediction possible for numerous additional alleles. We report here a ranking of HLA alleles, which have been identified to be the most informative. Modular peptide binding prediction is freely available to researchers on the web at http://www.peptidecheck.org .
Collapse
Affiliation(s)
- David S DeLuca
- Institute for Transfusion Medicine, Hanover Medical School, Carl-Neuberg-Str 1, 30625 Hanover, Germany.
| | | | | |
Collapse
|
21
|
Bade-Doeding C, Eiz-Vesper B, Figueiredo C, Seltsam A, Elsner HA, Blasczyk R. Peptide-binding motif of HLA-A*6603. Immunogenetics 2004; 56:769-72. [PMID: 15592665 DOI: 10.1007/s00251-004-0747-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/04/2004] [Indexed: 10/26/2022]
Abstract
The peptide motif of HLA-A*6603 was determined and compared with the available data on the peptide motifs of A*6601 and A*6602. A*6601 differs from A*6602 by two amino acids at positions 90 (Asp90Ala; outer loop) and 163 (Arg163Glu; pocket A). A*6603 differs from A*6601 and A*6602 by a single amino-acid exchange at position 70 (His70Gln; pockets A, B and C). No significant differences were found between the A*6602 and A*6603 peptide motifs suggesting that the Gln70His variation is of minor importance. However, the auxiliary anchors at position P1 of peptides bound by A*6601 (polar/acidic: Asp, Glu) and A*6602/6603 (polar/neutral: Ser) had striking differences. This finding may be best explained by the Arg163Glu substitution that results in a shift towards higher acidity in pocket A of A*6602/6603, apparently leading to the loss of preference for acidic auxiliary anchors. The similarity of A*6602 and A*6603 peptide motifs suggests low allogenicity when mismatched in stem cell transplantation. Inversely, the differences in A*6601 versus A*6602/6603 peptide motifs suggest that mismatches will have a higher allogenicity. These data will contribute to both assessing permissive mismatches in the A*66 group and weighting the impact of this individual amino-acid variation for matching and peptide binding algorithms.
Collapse
Affiliation(s)
- Christina Bade-Doeding
- Department of Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | | | | | | | |
Collapse
|