1
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
2
|
Awadi A, Suchentrunk F, Knauer F, Smith S, Tolesa Z, Ben Slimen H. Spatial diversity of MHC class II DRB exon2 sequences in North African cape hares (Lepus capensis): positive selection and climatic adaptation signals. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
4
|
Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics 2019; 72:25-36. [PMID: 31624862 DOI: 10.1007/s00251-019-01132-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) is central to the innate and adaptive immune responses of jawed vertebrates. Characteristic of the MHC are high gene density, gene copy number variation, and allelic polymorphism. Because apes and monkeys are the closest living relatives of humans, the MHCs of these non-human primates (NHP) are studied in depth in the context of evolution, biomedicine, and conservation biology. The Immuno Polymorphism Database (IPD)-MHC NHP Database (IPD-MHC NHP), which curates MHC data of great and small apes, as well as Old and New World monkeys, has been upgraded. The curators of the database are responsible for providing official designations for newly discovered alleles. This nomenclature report updates the 2012 report, and summarizes important nomenclature issues and relevant novel features of the IPD-MHC NHP Database.
Collapse
|
5
|
de Winter II, Qurkhuli T, de Groot N, de Vos-Rouweler AJM, van Hooft P, Heitkönig IMA, Prins HHT, Bontrop RE, Doxiadis GGM. Determining Mhc-DRB profiles in wild populations of three congeneric true lemur species by noninvasive methods. Immunogenetics 2018; 71:97-107. [PMID: 30324236 PMCID: PMC6327083 DOI: 10.1007/s00251-018-1085-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic and polygenic genomic region that plays a crucial role in immune-related diseases. Given the need for comparative studies on the variability of immunologically important genes among wild populations and species, we investigated the allelic variation of MHC class II DRB among three congeneric true lemur species: the red-fronted lemur (Eulemur rufifrons), red-bellied lemur (Eulemur rubriventer), and black lemur (Eulemur macaco). We noninvasively collected hair and faecal samples from these species across different regions in Madagascar. We assessed DRB exon 2 polymorphism with a newly developed primer set, amplifying nearly all non-synonymous codons of the antigen-binding sites. We defined 26 DRB alleles from 45 individuals (17 alleles from E. rufifrons (N = 18); 5 from E. rubriventer (N = 7); and 4 from E. macaco (N = 20). All detected alleles are novel and show high levels of nucleotide (26.8%) and non-synonymous codon polymorphism (39.4%). In these lemur species, we found neither evidence of a duplication of DRB genes nor a sharing of alleles among sympatric groups or allopatric populations of the same species. The non-sharing of alleles may be the result of a geographical separation over a long time span and/or different pathogen selection pressures. We found dN/dS rates > 1 in the functionally important antigen recognition sites, providing evidence for balancing selection. Especially for small and isolated populations, quantifying and monitoring DRB variation are recommended to establish successful conservation plans that mitigate the possible loss of immunogenetic diversity in lemurs.
Collapse
Affiliation(s)
- Iris I de Winter
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands. .,Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Tamar Qurkhuli
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Pim van Hooft
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Herbert H T Prins
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Department of Theoretical Biology and Bioinformatics, University of Utrecht, Utrecht, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
6
|
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 2016; 267:259-82. [PMID: 26284483 DOI: 10.1111/imr.12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Grogan KE, McGinnis GJ, Sauther ML, Cuozzo FP, Drea CM. Next-generation genotyping of hypervariable loci in many individuals of a non-model species: technical and theoretical implications. BMC Genomics 2016; 17:204. [PMID: 26957424 PMCID: PMC4782575 DOI: 10.1186/s12864-016-2503-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Across species, diversity at the Major Histocompatibility Complex (MHC) is critical to disease resistance and population health; however, use of MHC diversity to quantify the genetic health of populations has been hampered by the extreme variation found in MHC genes. Next generation sequencing (NGS) technology generates sufficient data to genotype even the most diverse species, but workflows for distinguishing artifacts from alleles are still under development. We used NGS to evaluate the MHC diversity of over 300 captive and wild ring-tailed lemurs (Lemur catta: Primates: Mammalia). We modified a published workflow to address errors that arise from deep sequencing individuals and tested for evidence of selection at the most diverse MHC genes. RESULTS In addition to evaluating the accuracy of 454 Titanium and Ion Torrent PGM for genotyping large populations at hypervariable genes, we suggested modifications to improve current methods of allele calling. Using these modifications, we genotyped 302 out of 319 individuals, obtaining an average sequencing depth of over 1000 reads per amplicon. We identified 55 MHC-DRB alleles, 51 of which were previously undescribed, and provide the first sequences of five additional MHC genes: DOA, DOB, DPA, DQA, and DRA. The additional five MHC genes had one or two alleles each with little sequence variation; however, the 55 MHC-DRB alleles showed a high dN/dS ratio and trans-species polymorphism, indicating a history of positive selection. Because each individual possessed 1-7 MHC-DRB alleles, we suggest that ring-tailed lemurs have four, putatively functional, MHC-DRB copies. CONCLUSIONS In the future, accurate genotyping methods for NGS data will be critical to assessing genetic variation in non-model species. We recommend that future NGS studies increase the proportion of replicated samples, both within and across platforms, particularly for hypervariable genes like the MHC. Quantifying MHC diversity within non-model species is the first step to assessing the relationship of genetic diversity at functional loci to individual fitness and population viability. Owing to MHC-DRB diversity and copy number, ring-tailed lemurs may serve as an ideal model for estimating the interaction between genetic diversity, fitness, and environment, especially regarding endangered species.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Emory University, Room 2006 O. Wayne Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | | | - Michelle L Sauther
- Department of Anthropology, University of Colorado-Boulder, Boulder, CO, USA
| | - Frank P Cuozzo
- Department of Anthropology, University of North Dakota, Grand Forks, ND, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
8
|
Pechouskova E, Dammhahn M, Brameier M, Fichtel C, Kappeler PM, Huchard E. MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener. Immunogenetics 2015; 67:229-45. [PMID: 25687337 PMCID: PMC4357647 DOI: 10.1007/s00251-015-0827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe’s mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Collapse
Affiliation(s)
- Eva Pechouskova
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
9
|
Koutsogiannouli EA, Moutou KA, Stamatis C, Walter L, Mamuris Z. Genetic variation in the major histocompatibility complex of the European brown hare (Lepus europaeus) across distinct phylogeographic areas. Immunogenetics 2014; 66:379-92. [DOI: 10.1007/s00251-014-0772-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
10
|
Huchard E, Baniel A, Schliehe-Diecks S, Kappeler PM. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate. Mol Ecol 2013; 22:4071-86. [DOI: 10.1111/mec.12349] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Elise Huchard
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
- Courant Research Centre Evolution of Social Behaviour; University of Göttingen; Kellnerweg 6 Göttingen Germany
| | - Alice Baniel
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
| | - Susanne Schliehe-Diecks
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
- Courant Research Centre Evolution of Social Behaviour; University of Göttingen; Kellnerweg 6 Göttingen Germany
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
- Courant Research Centre Evolution of Social Behaviour; University of Göttingen; Kellnerweg 6 Göttingen Germany
| |
Collapse
|
11
|
Yao YF, Zhao JJ, Dai QX, Li JY, Zhou L, Wang YT, Ni QY, Zhang MW, Xu HL. Identification and characterization of the major histocompatibility complex class II DQB (MhcMath-DQB1) alleles in Tibetan macaques (Macaca thibetana). ACTA ACUST UNITED AC 2013; 82:113-21. [PMID: 23745600 DOI: 10.1111/tan.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 11/26/2022]
Abstract
Tibetan macaque (Macaca thibetana), an endangered primate species endemic to China, have been used as experimental animal model for various human diseases. Major histocompatibility complex (MHC) genes play a crucial role in the susceptibility and/or resistance to many human diseases, but little is known about Tibetan macaques. To gain an insight into the MHC background and to facilitate the experimental use of Tibetan macaques, the second exon of Mhc-DQB1 gene was sequenced in a cohort of wild Tibetan macaques living in the Sichuan province of China. A total of 23 MhcMath-DQB1 alleles were identified for the first time, illustrating a marked allelic polymorphism at the DQB1 locus for these macaques. Most of the sequences (74%) observed in this study belong to DQB1*06 (9 alleles) and DQB1*18 (8 alleles) lineages, and the rest (26%) belong to DQB1*15 (3 alleles) and DQB1*17 (3 alleles) lineages. The most frequent alleles detected among these macaques were MhcMath-DQB1*15:02:02 (17.9%), followed by Math-DQB1*06:06, 17:03 and 18:01, which were detected in 9 (16.1%) of the monkeys, respectively. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the peptide-binding region, suggesting balancing selection for maintaining polymorphisms at the MHC class II DQB1 locus. Phylogenetic analyses confirms the trans-species model of evolution of the Mhc-DQB1 genes in non-human primates, and in particular, the extensive allele sharing is observed between Tibetan and other macaque species.
Collapse
Affiliation(s)
- Y-F Yao
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huchard E, Albrecht C, Schliehe-Diecks S, Baniel A, Roos C, Kappeler PM, Peter PMK, Brameier M. Large-scale MHC class II genotyping of a wild lemur population by next generation sequencing. Immunogenetics 2012; 64:895-913. [PMID: 22948859 PMCID: PMC3496554 DOI: 10.1007/s00251-012-0649-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/13/2012] [Indexed: 12/23/2022]
Abstract
The critical role of major histocompatibility complex (MHC) genes in disease resistance, along with their putative function in sexual selection, reproduction and chemical ecology, make them an important genetic system in evolutionary ecology. Studying selective pressures acting on MHC genes in the wild nevertheless requires population-wide genotyping, which has long been challenging because of their extensive polymorphism. Here, we report on large-scale genotyping of the MHC class II loci of the grey mouse lemur (Microcebus murinus) from a wild population in western Madagascar. The second exons from MHC-DRB and -DQB of 772 and 672 individuals were sequenced, respectively, using a 454 sequencing platform, generating more than 800,000 reads. Sequence analysis, through a stepwise variant validation procedure, allowed reliable typing of more than 600 individuals. The quality of our genotyping was evaluated through three independent methods, namely genotyping the same individuals by both cloning and 454 sequencing, running duplicates, and comparing parent-offspring dyads; each displaying very high accuracy. A total of 61 (including 20 new) and 60 (including 53 new) alleles were detected at DRB and DQB genes, respectively. Both loci were non-duplicated, in tight linkage disequilibrium and in Hardy-Weinberg equilibrium, despite the fact that sequence analysis revealed clear evidence of historical selection. Our results highlight the potential of 454 sequencing technology in attempts to investigate patterns of selection shaping MHC variation in contemporary populations. The power of this approach will nevertheless be conditional upon strict quality control of the genotyping data.
Collapse
Affiliation(s)
- Elise Huchard
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Smith S, de Bellocq JG, Suchentrunk F, Schaschl H. Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus. Immunogenetics 2011; 63:743-51. [PMID: 21688061 PMCID: PMC3190090 DOI: 10.1007/s00251-011-0539-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are attractive candidates for investigating the link between adaptive variation and individual fitness. High levels of diversity at the MHC are thought to be the result of parasite-mediated selection and there is growing evidence to support this theory. Most studies, however, target just a single gene within the MHC and infer any evidence of selection to be representative of the entire gene region. Here we present data from three MHC class II beta genes (DPB, DQB, and DRB) for brown hares in two geographic regions and compare them against previous results from a class II alpha-chain gene (DQA). We report moderate levels of diversity and high levels of population differentiation in the DQB and DRB genes (Na = 11, Dest = 0.071 and Na = 15, Dest = 0.409, respectively), but not for the DPB gene (Na = 4, Dest = 0.00). We also detected evidence of positive selection within the peptide binding region of the DQB and DRB genes (95% CI, ω > 1.0) but found no signature of selection for DPB. Mutation and recombination were both found to be important processes shaping the evolution of the class II genes. Our findings suggest that while diversifying selection is a significant contributor to the generally high levels of MHC diversity, it does not act in a uniform manner across the entire MHC class II region. The beta-chain genes that we have characterized provide a valuable set of MHC class II markers for future studies of the evolution of adaptive variation in Leporids.
Collapse
Affiliation(s)
- Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstr. 1, 1160 Vienna, Austria,
| | | | | | | |
Collapse
|