1
|
Morrissey KA, Stammnitz MR, Murchison E, Miller RD. Comparative genomics of the T cell receptor μ locus in marsupials and monotremes. Immunogenetics 2023; 75:507-515. [PMID: 37747540 PMCID: PMC7615758 DOI: 10.1007/s00251-023-01320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
T cells are a primary component of the vertebrate adaptive immune system. There are three mammalian T cell lineages based on their T cell receptors (TCR). The αβ T cells and γδ T cells are ancient and found broadly in vertebrates. The more recently discovered γμ T cells are uniquely mammalian and only found in marsupials and monotremes. In this study, we compare the TCRμ locus (TRM) across the genomes of two marsupials, the gray short-tailed opossum and Tasmanian devil, and one monotreme, the platypus. These analyses revealed lineage-specific duplications, common to all non-eutherian mammals described. There is conserved synteny in the TRM loci of both marsupials but not in the monotreme. Our results are consistent with an ancestral cluster organization which was present in the last common mammalian ancestor which underwent lineage-specific duplications and divergence among the non-eutherian mammals.
Collapse
Affiliation(s)
- K A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | - M R Stammnitz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - E Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Schraven AL, Hansen VL, Morrissey KA, Stannard HJ, Ong OT, Douek DC, Miller RD, Old JM. Developmental and comparative immunology single-cell transcriptome analysis of the B-cell repertoire reveals the usage of immunoglobulins in the gray short-tailed opossum (Monodelphis domestica). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104141. [PMID: 34038789 DOI: 10.1016/j.dci.2021.104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
B-cells are key to humoral immunity, are found in multiple lymphoid organs, and have the unique ability to mediate the production of antigen-specific antibodies in the presence of pathogens. The marsupial immunoglobulin (Ig) heavy (H) chain locus encodes four constant region isotypes, IgA, IgG, IgM and IgE, but no IgD, and there are two light (L) chain isotypes, lambda (Igλ) and kappa (Igκ). To gain an understanding of the marsupial humoral immune system, B-cell transcriptomes generated by single-cell RNA sequencing from gray short-tailed opossum (Monodelphis domestica) splenocytes, and peripheral blood mononuclear cells were analysed. The cells used were from a single unimmunized animal and the majority of B-cells were transcribing IgM heavy chains. The ratio of Ig light chain use was roughly 2:1, Igλ:Igκ in this individual. This was not predicted due to Igκ being the more complex of the two L chain loci. The variable (V) gene segment pairs used in individual B-cells confirm greater diversity provided by the L chain V. This study is the first to report on using single cell analysis to investigate Ig repertoires in a marsupial and confirms a number of prior hypothesis, as well as revealing some surprises.
Collapse
Affiliation(s)
- Andrea L Schraven
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Victoria L Hansen
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, New Mexico, USA
| | - Kimberly A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, New Mexico, USA
| | - Hayley J Stannard
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW, 2678, Australia
| | - Oselyne Tw Ong
- Children's Medical Research Institute, Westmead, NSW, 2145, Australia
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, New Mexico, USA
| | - Julie M Old
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
3
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Schraven AL, Stannard HJ, Ong OTW, Old JM. Immunogenetics of marsupial B-cells. Mol Immunol 2019; 117:1-11. [PMID: 31726269 DOI: 10.1016/j.molimm.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022]
Abstract
Marsupials and eutherians are mammals that differ in their physiological traits, predominately their reproductive and developmental strategies; eutherians give birth to well-developed young, while marsupials are born highly altricial after a much shorter gestation. These developmental traits also result in differences in the development of the immune system of eutherian and marsupial species. In eutherians, B-cells are the key to humoral immunity as they are found in multiple lymphoid organs and have the unique ability to mediate the production of antigen-specific antibodies in the presence of extracellular pathogens. The development of B-cells in marsupials has been reported and hypothesised to be similar to that of eutherians, except that haematopoiesis occurs in the liver, postpartum, until the bone marrow fully matures. In eutherians, specific genes are linked to specific stages in B-cell development, maturation, and differentiation processes, and have been identified including immunoglobulins (heavy and light chains), cluster of differentiation markers (CD10, 19, 34 and CD79α/β), signal transduction molecules (BTK, Lyn and Syk) and transcriptional regulators (EBF1, E2A, and Pax5). This review aims to discuss the known similarities and differences between marsupial and eutherian B-cells, in regards to their genetic presence, homology, and developmental stages, as well as to highlight the areas requiring further investigation. By enhancing our understanding of the genes that are involved with B-cells in the marsupial lineage, it will, in turn, aid our understanding of the marsupial immune system and support the development of specific immunological reagents for research and wildlife conservation purposes.
Collapse
Affiliation(s)
- Andrea L Schraven
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Hayley J Stannard
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW 2678, Australia
| | - Oselyne T W Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Julie M Old
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
5
|
Fu Y, Yang Z, Huang J, Cheng X, Wang X, Yang S, Ren L, Lian Z, Han H, Zhao Y. Identification of Two Nonrearranging IgSF Genes in Chicken Reveals a Novel Family of Putative Remnants of an Antigen Receptor Precursor. THE JOURNAL OF IMMUNOLOGY 2019; 202:1992-2004. [PMID: 30770416 DOI: 10.4049/jimmunol.1801305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022]
Abstract
In this study, we identified a pair of nonrearranging VJ-joined Ig superfamily genes, termed putative remnants of an Ag receptor precursor (PRARP) genes, in chicken. Both genes encode a single V-set Ig domain consisting of a canonical J-like segment and a potential immunoreceptor tyrosine-based inhibitory or switch motif in the cytoplasmic region. In vitro experiments showed that both genes were expressed at the cell surface as membrane proteins, and their recombinant products formed a monomer and a disulfide-linked homodimer or a heterodimer. These two genes were mainly expressed in B and T cells and were upregulated in response to stimulation with poly(I:C) in vitro and vaccination in vivo. Orthologs of PRARP have been identified in bony fish, amphibians, reptiles, and other birds, and a V-C1 structure similar to that of Ig or TCR chains was found in all these genes, with the exception of those in avian species, which appear to contain degenerated C1 domains or divergent Ig domains. Phylogenetic analyses suggested that the newly discovered genes do not belong to any known immune receptor family and appear to be a novel gene family. Further elucidation of the functions of PRARP and their origin might provide significant insights into the evolution of the immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Yanbin Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, People's Republic of China; and
| | - Shiping Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhengxing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
6
|
Ott JA, Castro CD, Deiss TC, Ohta Y, Flajnik MF, Criscitiello MF. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus. eLife 2018; 7:28477. [PMID: 29664399 PMCID: PMC5931798 DOI: 10.7554/elife.28477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Texas, United States
| |
Collapse
|
7
|
Abstract
Marsupial immune responses were previously touted as ‘primitive’ but we now know that the marsupial immune system is complex and on par with that of eutherian mammals. In this manuscript we review the field of marsupial immunology, focusing on basic anatomy, developmental immunology, immunogenetics and evolution. We concentrate on advances to our understanding of marsupial immune gene architecture, made possible by the recent sequencing of the opossum, tammar wallaby and Tasmanian devil genomes. Characterisation of immune gene sequences now paves the way for the development of immunological assays that will allow us to more accurately study health and disease in marsupials.
Collapse
|