1
|
Qiao P, Yue C, Peng W, Liu K, Huo S, Zhang D, Chai Y, Qi J, Sun Z, Gao GF, Wu G, Liu J. Precise motif and cross-presentation of coronavirus peptides by feline MHC class I: implications for the mild infection of SARS-CoV-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:115-129. [PMID: 40073263 DOI: 10.1093/jimmun/vkae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 03/14/2025]
Abstract
As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein. The possibility of cross-presentation is further supported by the similar conformation of the corresponding peptides KP-CoV-9 (RSFIEDLLF) and KM-FECV-9 (RSAVEDLLF) from the 2 coronaviruses presented by FLA-K*00701. Our findings provide insights into the understanding of the cross-presentation of peptides from SARS-CoV-2 and feline coronaviruses FECV and the development of universal vaccine for coronaviruses.
Collapse
Affiliation(s)
- Peiwen Qiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyu Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuting Huo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Guizhen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
2
|
Zhai B, Meng YM, Xie SC, Peng JJ, Liu Y, Qiu Y, Wang L, Zhang J, He JJ. iTRAQ-Based Phosphoproteomic Analysis Exposes Molecular Changes in the Small Intestinal Epithelia of Cats after Toxoplasma gondii Infection. Animals (Basel) 2023; 13:3537. [PMID: 38003154 PMCID: PMC10668779 DOI: 10.3390/ani13223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite, has the ability to invade and proliferate within most nucleated cells. The invasion and destruction of host cells by T. gondii lead to significant changes in the cellular signal transduction network. One important post-translational modification (PTM) of proteins is phosphorylation/dephosphorylation, which plays a crucial role in cell signal transmission. In this study, we aimed to investigate how T. gondii regulates signal transduction in definitive host cells. We employed titanium dioxide (TiO2) affinity chromatography to enrich phosphopeptides in the small intestinal epithelia of cats at 10 days post-infection with the T. gondii Prugniuad (Pru) strain and quantified them using iTRAQ technology. A total of 4998 phosphopeptides, 3497 phosphorylation sites, and 1805 phosphoproteins were identified. Among the 705 differentially expressed phosphoproteins (DEPs), 68 were down-regulated and 637 were up-regulated. The bioinformatics analysis revealed that the DE phosphoproteins were involved in various cellular processes, including actin cytoskeleton reorganization, cell necroptosis, and MHC immune processes. Our findings confirm that T. gondii infection leads to extensive changes in the phosphorylation of proteins in the cat intestinal epithelial cells. The results of this study provide a theoretical foundation for understanding the interaction between T. gondii and its definitive host.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Yu-Meng Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jun-Jie Peng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China;
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Lu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids. Front Genet 2022; 13:829891. [PMID: 35309138 PMCID: PMC8924298 DOI: 10.3389/fgene.2022.829891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.
Collapse
Affiliation(s)
- Martin Plasil
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Futas
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - April Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, VIA, Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Miyamae J, Okano M, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T. Haplotype structures and polymorphisms of dog leukocyte antigen (DLA) class I loci shaped by intralocus and interlocus recombination events. Immunogenetics 2022; 74:245-259. [PMID: 34993565 DOI: 10.1007/s00251-021-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
The dog leukocyte antigen (DLA) class I genomic region is located on chromosome 12, and the class I genomic region is composed of at least two distinct haplotypic gene structures, DLA-88-DLA-12 and DLA-88-DLA-88L. However, detailed information of the genomic differences among DLA-88, DLA-12, and DLA-88L are still lacking at the full-length gene level, and therefore, DLA allelic sequences classified for each of these loci are limited in number so far. In this study, we determined the DNA sequence of a 95-kb DLA class I genomic region including DLA-88, DLA-12/88L, and DLA-64 with three DLA homozygous dogs and of 37 full-length allelic gene sequences for DLA-88 and DLA-12/88L loci in 26 DLA class I homozygous dogs. Nucleotide diversity profiles of the 95-kb regions and sequence identity scores of the allelic sequences suggested that DLA-88L is a hybrid gene generated by interlocus and/or intralocus gene conversion between DLA-88 and DLA-12. The putative minimum conversion tract was estimated to be at least an 850-bp segment in length located from the 5´flanking untranslated region to the end of intron 2. In addition, at least one DLA-12 allele (DLA-12*004:01) was newly generated by interlocus gene conversion. In conclusion, the analysis for the occurrence of gene conversion within the dog DLA class I region revealed intralocus gene conversion tracts in 17 of 27 DLA-88 alleles and two of 10 DLA-12 alleles, suggesting that intralocus gene conversion has played an important role in expanding DLA allelic variations.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan.
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Jerzy K Kulski
- Discipline of Psychiatry, Medical School, The University of Western Australia, Crawley, WA, Australia
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
5
|
High-resolution characterization of the structural features and genetic variation of six feline leukocyte antigen class I loci via single molecule, real-time (SMRT) sequencing. Immunogenetics 2021; 73:381-393. [PMID: 34175985 DOI: 10.1007/s00251-021-01221-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Of the 12 full-length feline leukocyte antigen class I (FLAI) loci, 3 are presumed to be classical: FLAI-E, FLAI-H, and FLAI-K. As diversity is a class Ia hallmark, multi-allelism is an important surrogate supporting a classical designation, in the absence of direct demonstration of T-cell restriction. Conversely, limited polymorphism at an expressed locus suggests regulation of immune effectors with invariant receptors, and non-classical status. FLAI-A, FLAI-J, FLAI-L, and FLAI-O are putative class Ib genes in cats. For both classes, identifying prevalent variants across outbred populations can illuminate specific genotypes to be prioritized for immune studies, as shared alleles direct shared responses. Since variation is concentrated in exons 2 and 3, which encode the antigen-binding domains, partial-length cloning/sequencing can be used for allele discovery, but is laborious and occasionally ambiguous. Here we develop a targeted approach to FLAI genotyping, using the single-molecule real-time (SMRT) platform, which allows full-length (3.4-kb) reads without assembly. Consensus sequences matched full-length Sanger references. Thirty-one new class Ia genes were found in 17 cats. Alleles segregated strongly by loci, and the origins of formerly difficult-to-assign sequences were resolved. Although not targeted, FLAI-L and FLAI-J, and the pseudogene FLAI-F, were also returned. Eighteen class Ib alleles were identified. Diversity was restricted and outside hypervariable regions. Both class Ib genes were transcriptionally active. Novel alternative splicing of FLAI-L was observed. SMRT sequencing of FLAI amplicons is useful for full-length genotyping at feline class Ia loci. High-throughput sequencing could allow highly accurate allele surveys in large cat cohorts.
Collapse
|
6
|
Evolution of MHC class I genes in Japanese and Russian raccoon dogs, Nyctereutes procyonoides (Carnivora: Canidae). MAMMAL RES 2021; 66:371-383. [PMID: 33747753 PMCID: PMC7957040 DOI: 10.1007/s13364-021-00561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 10/27/2022]
Abstract
Major histocompatibility complex (MHC) genes have been widely studied to assess the immunological fitness and evolutionary adaptation of animal populations. Among the Canidae, the raccoon dog's adventurous nature, omnivorous behavior, and high variability of intracellular pathogens make it ideal to study selection on MHC class I in a non-model canid species. Here, we examined allelic diversity and evolutionary patterns of MHC class I genes in the raccoon dog (Nyctereutes procyonoides). We identified 48 novel MHC class I alleles from 31 raccoon dogs from Japan and Russia. Some alleles were geographically restricted, whereas others were widely distributed across the species' range. The rate of non-synonymous substitutions was greater than that of synonymous substitutions for both exon 2 and exon 3 encoding α1 and α2 domains, respectively, in the α chain of the MHC class I protein. Positively selected sites at the amino acid level were evident in both the α1 and α2 domains, and a recombination breakpoint was found in exon 3. Bayesian phylogenetic trees showed no evidence of trans-species polymorphism (TSP) with alleles from carnivoran species in other families but did detect TSP between raccoon dogs and the domestic dog, Canis familiaris, indicative of long-term balancing selection in canids. Our results indicate that the extensive allelic diversity of MHC class I in Japanese and Russian raccoon dogs has been influenced and maintained by pathogen-driven positive selection, recombination, and long-term balancing selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13364-021-00561-y.
Collapse
|
7
|
Okano M, Miyamae J, Suzuki S, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T. Identification of Novel Alleles and Structural Haplotypes of Major Histocompatibility Complex Class I and DRB Genes in Domestic Cat ( Felis catus) by a Newly Developed NGS-Based Genotyping Method. Front Genet 2020; 11:750. [PMID: 32760428 PMCID: PMC7375346 DOI: 10.3389/fgene.2020.00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic and duplicated genomic region that encodes transplantation and immune regulatory molecules. Although it is well-known that particular MHC allelic polymorphisms and haplotypes are genetically relate to immune-mediated diseases detailed information of the cat MHC (Feline Leukocyte Antigen; FLA) genetic and haplotypic structure and diversity is limited in comparison to humans and many other species. In this study, to better understand the degree and types of allele and allelic haplotype diversity of FLA-class I (FLA-I) and FLA-DRB loci in domestic cats, we identified six expressible FLA-I loci in peripheral white blood cells by in silico estimation of the coding exons and NGS-based amplicon sequencing using five unrelated cats. We then used a newly developed NGS-based genotyping method to genotype and annotate 32 FLA-I and 16 FLA-DRB sequences in two families of 20 domestic cats. A total of 14 FLA-I and seven FLA-DRB were identified as novel polymorphic sequences. Phylogenetic analyses grouped the sequences into six FLA-I (FLA-E/H/K, FLA-A, FLA-J, FLA-L, FLA-O and a tentatively named FLA-E/H/K_Rec) and four FLA-DRB (FLA-DRB1, FLA-DRB3, FLA-DRB4, and FLA-DRB5) lineages. Pedigree analysis of two cat families revealed eight distinct FLA structural haplotypes (Class I - DRB) with five to eight FLA-I and two to three FLA-DRB transcribed loci per haplotype. It is evident that the eight FLA haplotypes were generated by gene duplications and deletions, and rearrangements by genetic recombination with the accumulation and/or inheritance of novel polymorphisms. These findings are useful for further genetic diversity analysis and disease association studies among cat breeds and in veterinary medicine.
Collapse
Affiliation(s)
- Masaharu Okano
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, Isehara, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jerzy K Kulski
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, Isehara, Japan.,Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, Isehara, Japan
| |
Collapse
|
8
|
Campion DP, Dowell FJ. Translating Pharmacogenetics and Pharmacogenomics to the Clinic: Progress in Human and Veterinary Medicine. Front Vet Sci 2019; 6:22. [PMID: 30854372 PMCID: PMC6396708 DOI: 10.3389/fvets.2019.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
As targeted personalized therapy becomes more widely used in human medicine, clients will expect the veterinary clinician to be able to implement an evidence-based strategy regarding both the prescribing of medicines and also recognition of the potential for adverse drug reactions (ADR) for their pet, at breed and individual level. This review aims to provide an overview of current developments and challenges in pharmacogenetics in medicine for a veterinary audience and to map these to developments in veterinary pharmacogenetics. Pharmacogenetics has been in development over the past 100 years but has been revolutionized following the publication of the human, and then veterinary species genomes. Genetic biomarkers called pharmacogenes have been identified as specific genetic loci on chromosomes which are associated with either positive or adverse drug responses. Pharmacogene variation may be classified according to the associated drug response, such as a change in (1) the pharmacokinetics; (2) the pharmacodynamics; (3) genes in the downstream pathway of the drug or (4) the effect of “off-target” genes resulting in a response that is unrelated to the intended target. There are many barriers to translation of pharmacogenetic information to the clinic, however, in human medicine, international initiatives are promising real change in the delivery of personalized medicine by 2025. We argue that for effective translation into the veterinary clinic, clinicians, international experts, and stakeholders must collaborate to ensure quality assurance and genetic test validation so that animals may also benefit from this genomics revolution.
Collapse
Affiliation(s)
- Deirdre P Campion
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona J Dowell
- Division of Veterinary Science and Education, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides. J Virol 2018; 92:JVI.01631-17. [PMID: 29263258 DOI: 10.1128/jvi.01631-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu63 and Trp167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine.IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp167 blocks the left side of pocket A, causing P1D to conflict with Glu63 We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Collapse
|
10
|
Morris KM, Kirby K, Beatty JA, Barrs VR, Cattley S, David V, O'Brien SJ, Menotti-Raymond M, Belov K. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions. J Hered 2014; 105:493-505. [PMID: 24620003 PMCID: PMC4048552 DOI: 10.1093/jhered/esu017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 01/14/2014] [Indexed: 11/15/2022] Open
Abstract
Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species.
Collapse
Affiliation(s)
- Katrina M Morris
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Katherine Kirby
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Julia A Beatty
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Vanessa R Barrs
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Sonia Cattley
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Victor David
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Stephen J O'Brien
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Marilyn Menotti-Raymond
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Katherine Belov
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien).
| |
Collapse
|