1
|
Silver LW, McLennan EA, Beaman J, da Silva KB, Timms P, Hogg CJ, Belov K. Using bioinformatics to investigate functional diversity: a case study of MHC diversity in koalas. Immunogenetics 2024; 76:381-395. [PMID: 39367971 PMCID: PMC11496358 DOI: 10.1007/s00251-024-01356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/07/2024]
Abstract
Conservation genomics can greatly improve conservation outcomes of threatened populations, including those impacted by disease. Understanding diversity within immune gene families, including the major histocompatibility complex (MHC) and toll-like receptors (TLR), is important due to the role they play in disease resilience and susceptibility. With recent advancements in sequencing technologies and bioinformatic tools, the cost of generating high-quality sequence data has significantly decreased and made it possible to investigate diversity across entire gene families in large numbers of individuals compared to investigating only a few genes or a few populations previously. Here, we use the koala as a case study for investigating functional diversity across populations. We utilised previous target enrichment data and 438 whole genomes to firstly, determine the level of sequencing depth required to investigate MHC diversity and, secondly, determine the current level of diversity in MHC genes in koala populations. We determined for low complexity, conserved genes such as TLR genes 10 × sequencing depth is sufficient to reliably genotype more than 90% of variants, whereas for complex genes such as the MHC greater than 20 × and preferably 30 × sequencing depth is required. We used whole genome data to identify 270 biallelic SNPs across 24 MHC genes as well as copy number variation (CNV) within class I and class II genes and conduct supertype analysis. Overall, we have provided a bioinformatic workflow for investigating variation in a complex immune gene family from whole genome sequencing data and determined current levels of diversity within koala MHC genes.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5001, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5001, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
2
|
Silver LW, Hogg CJ, Belov K. Plethora of New Marsupial Genomes Informs Our Knowledge of Marsupial MHC Class II. Genome Biol Evol 2024; 16:evae156. [PMID: 39031605 PMCID: PMC11305139 DOI: 10.1093/gbe/evae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a vital role in the vertebrate immune system due to its role in infection, disease and autoimmunity, or recognition of "self". The marsupial MHC class II genes show divergence from eutherian MHC class II genes and are a unique taxon of therian mammals that give birth to altricial and immunologically naive young providing an opportune study system for investigating evolution of the immune system. Additionally, the MHC in marsupials has been implicated in disease associations, including susceptibility to Chlamydia pecorum infection in koalas. Due to the complexity of the gene family, automated annotation is not possible so here we manually annotate 384 class II MHC genes in 29 marsupial species. We find losses of key components of the marsupial MHC repertoire in the Dasyuromorphia order and the Pseudochiridae family. We perform PGLS analysis to show the gene losses we find are true gene losses and not artifacts of unresolved genome assembly. We investigate the associations between the number of loci and life history traits, including lifespan and reproductive output in lineages of marsupials and hypothesize that gene loss may be linked to the energetic cost and tradeoffs associated with pregnancy and reproduction. We found support for litter size being a significant predictor of the number of DBA and DBB loci, indicating a tradeoff between the energetic requirements of immunity and reproduction. Additionally, we highlight the increased susceptibility of Dasyuridae species to neoplasia and a potential link to MHC gene loss. Finally, these annotations provide a valuable resource to the immunogenetics research community to move forward and further investigate diversity in MHC genes in marsupials.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Peel E, Silver L, Brandies P, Zhu Y, Cheng Y, Hogg CJ, Belov K. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. Gigascience 2022; 11:giac100. [PMID: 36310247 PMCID: PMC9618407 DOI: 10.1093/gigascience/giac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides impetus for studying immune genes in wildlife. Despite the recent boom in genomes for wildlife species, immune genes are poorly annotated in nonmodel species owing to their high level of polymorphism and complex genomic organisation. Our research over the past decade and a half on Tasmanian devils and koalas highlights the importance of genomics and accurate immune annotations to investigate disease in wildlife. Given this, we have increasingly been asked the minimum levels of genome quality required to effectively annotate immune genes in order to study immunogenetic diversity. Here we set out to answer this question by manually annotating immune genes in 5 marsupial genomes and 1 monotreme genome to determine the impact of sequencing data type, assembly quality, and automated annotation on accurate immune annotation. RESULTS Genome quality is directly linked to our ability to annotate complex immune gene families, with long reads and scaffolding technologies required to reassemble immune gene clusters and elucidate evolution, organisation, and true gene content of the immune repertoire. Draft-quality genomes generated from short reads with HiC or 10× Chromium linked reads were unable to achieve this. Despite mammalian BUSCOv5 scores of up to 94.1% amongst the 6 genomes, automated annotation pipelines incorrectly annotated up to 59% of manually annotated immune genes regardless of assembly quality or method of automated annotation. CONCLUSIONS Our results demonstrate that long reads and scaffolding technologies, alongside manual annotation, are required to accurately study the immune gene repertoire of wildlife species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ying Zhu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610000, China
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
4
|
Peel E, Frankenberg S, Hogg CJ, Pask A, Belov K. Annotation of immune genes in the extinct thylacine (Thylacinus cynocephalus). Immunogenetics 2021; 73:263-275. [PMID: 33544183 DOI: 10.1007/s00251-020-01197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Advances in genome sequencing technology have enabled genomes of extinct species to be sequenced. However, given the fragmented nature of these genome assemblies, it is not clear whether it is possible to comprehensively annotate highly variable and repetitive genes such as those involved in immunity. As such, immune genes have only been investigated in a handful of extinct genomes, mainly in human lineages. In 2018 the genome of the thylacine (Thylacinus cynocephalus), a carnivorous marsupial from Tasmania that went extinct in 1936, was sequenced. Here we attempt to characterise the immune repertoire of the thylacine and determine similarity to its closest relative with a genome available, the Tasmanian devil (Sarcophilus harrisii), as well as other marsupials. Members from all major immune gene families were identified. However, variable regions could not be characterised, and complex families such as the major histocompatibility complex (MHC) were highly fragmented and located across multiple small scaffolds. As such, at a gene level we were unable to reconstruct full-length coding sequences for the majority of thylacine immune genes. Despite this, we identified genes encoding functionally important receptors and immune effector molecules, which suggests the functional capacity of the thylacine immune system was similar to other mammals. However, the high number of partial immune gene sequences identified limits our ability to reconstruct an accurate picture of the thylacine immune repertoire.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Carolyn J Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Pask
- School of BioSciences, The University of Melbourne, Vic, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
The Koala Immune Response to Chlamydial Infection and Vaccine Development-Advancing Our Immunological Understanding. Animals (Basel) 2021; 11:ani11020380. [PMID: 33546104 PMCID: PMC7913230 DOI: 10.3390/ani11020380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Chlamydia is a major pathogen of the Australian marsupial, the koala (Phascolarctos cinereus). One approach to improving this situation is to develop a vaccine. Human Chlamydia research suggests that an effective anti-chlamydial response will involve a balance between a cell-mediated Th1 response and a humoral Th2 responses, involving systemic IgG and mucosal IgA. Characterization of koalas with chlamydial disease suggests that increased expression for similar immunological pathways and monitoring of koalas’ post-vaccination can be successful and subsequently lead to improved vaccines. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Abstract Chlamydia is a significant pathogen for many species, including the much-loved Australian marsupial, the koala (Phascolarctos cinereus). To combat this situation, focused research has gone into the development and refinement of a chlamydial vaccine for koalas. The foundation of this process has involved characterising the immune response of koalas to both natural chlamydial infection as well as vaccination. From parallels in human and mouse research, it is well-established that an effective anti-chlamydial response will involve a balance of cell-mediated Th1 responses involving interferon-gamma (IFN-γ), humoral Th2 responses involving systemic IgG and mucosal IgA, and inflammatory Th17 responses involving interleukin 17 (IL-17) and neutrophils. Characterisation of koalas with chlamydial disease has shown increased expression within all three of these major immunological pathways and monitoring of koalas’ post-vaccination has detected further enhancements to these key pathways. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Recent advances in marsupial genetic knowledge and general nucleic acid assay technology have moved koala immunological research a step closer to other mammalian research systems. However, koala-specific reagents to directly assay cytokine levels and cell-surface markers are still needed to progress our understanding of koala immunology.
Collapse
|
6
|
Quigley BL, Tzipori G, Nilsson K, Timms P. High-throughput immunogenetic typing of koalas suggests possible link between MHC alleles and cancers. Immunogenetics 2020; 72:499-506. [PMID: 33083849 PMCID: PMC7725693 DOI: 10.1007/s00251-020-01181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Characterizing the allelic diversity within major histocompatibility complex (MHC) genes is an important way of determining the potential genetic resilience of a population to infectious and ecological pressures. For the koala (Phascolarctos cinereus), endemic diseases, anthropogenic factors and climate change are all placing increased pressure on this vulnerable marsupial. To increase the ability of researchers to study MHC genetics in koalas, this study developed and tested a high-throughput immunogenetic profiling methodology for targeting MHC class I UA and UC genes and MHC class II DAB, DBB, DCB and DMB genes in a population of 82 captive koalas. This approach was validated by comparing the determined allelic profiles from 36 koala family units (18 dam-sire-joey units and 18 parent-joey pairs), finding 96% overall congruence within family profiles. Cancers are a significant cause of morbidity in koalas and the risk factors remain undetermined. Our analysis of this captive population revealed several novel MHC alleles, including a potential link between the DBB*03 allele and a risk of developing cancer. This method offers a reliable, high-throughput protocol for expanded study into koala immunogenetics.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| | - Galit Tzipori
- Lone Pine Koala Sanctuary, Fig Tree Pocket, QLD, Australia
| | - Karen Nilsson
- Lone Pine Koala Sanctuary, Fig Tree Pocket, QLD, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| |
Collapse
|
7
|
Deakin JE, Potter S. Marsupial chromosomics: bridging the gap between genomes and chromosomes. Reprod Fertil Dev 2020; 31:1189-1202. [PMID: 30630589 DOI: 10.1071/rd18201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Marsupials have unique features that make them particularly interesting to study, and sequencing of marsupial genomes is helping to understand their evolution. A decade ago, it was a huge feat to sequence the first marsupial genome. Now, the advances in sequencing technology have made the sequencing of many more marsupial genomes possible. However, the DNA sequence is only one component of the structures it is packaged into: chromosomes. Knowing the arrangement of the DNA sequence on each chromosome is essential for a genome assembly to be used to its full potential. The importance of combining sequence information with cytogenetics has previously been demonstrated for rapidly evolving regions of the genome, such as the sex chromosomes, as well as for reconstructing the ancestral marsupial karyotype and understanding the chromosome rearrangements involved in the Tasmanian devil facial tumour disease. Despite the recent advances in sequencing technology assisting in genome assembly, physical anchoring of the sequence to chromosomes is required to achieve a chromosome-level assembly. Once chromosome-level assemblies are achieved for more marsupials, we will be able to investigate changes in the packaging and interactions between chromosomes to gain an understanding of the role genome architecture has played during marsupial evolution.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
8
|
Robbins A, Hanger J, Jelocnik M, Quigley BL, Timms P. Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes. Sci Rep 2020; 10:15013. [PMID: 32929174 PMCID: PMC7490398 DOI: 10.1038/s41598-020-72050-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Chlamydial disease control is increasingly utilised as a management tool to stabilise declining koala populations, and yet we have a limited understanding of the factors that contribute to disease progression. To examine the impact of host and pathogen genetics, we selected two geographically separated south east Queensland koala populations, differentially affected by chlamydial disease, and analysed koala major histocompatibility complex (MHC) genes, circulating strains of Chlamydia pecorum and koala retrovirus (KoRV) subtypes in longitudinally sampled, well-defined clinical groups. We found that koala immunogenetics and chlamydial genotypes differed between the populations. Disease progression was associated with specific MHC alleles, and we identified two putative susceptibility (DCb 03, DBb 04) and protective (DAb 10, UC 01:01) variants. Chlamydial genotypes belonging to both Multi-Locus Sequence Typing sequence type (ST) 69 and ompA genotype F were associated with disease progression, whereas ST 281 was associated with the absence of disease. We also detected different ompA genotypes, but not different STs, when long-term infections were monitored over time. By comparison, KoRV profiles were not significantly associated with disease progression. These findings suggest that chlamydial genotypes vary in pathogenicity and that koala immunogenetics and chlamydial strains are more directly involved in disease progression than KoRV subtypes.
Collapse
Affiliation(s)
- Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, QLD, 4510, Australia
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
9
|
Olagoke O, Quigley BL, Hemmatzadeh F, Tzipori G, Timms P. Therapeutic vaccination of koalas harbouring endogenous koala retrovirus (KoRV) improves antibody responses and reduces circulating viral load. NPJ Vaccines 2020; 5:60. [PMID: 32699650 PMCID: PMC7367292 DOI: 10.1038/s41541-020-0210-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The long-term survival of the koala is under serious threat from multiple factors, including infectious disease agents such as Chlamydia and koala retrovirus (KoRV). KoRV is present in both exogenous and endogenous forms, depending on the geographical location of the population. In the northern half of Australia, it is present as an endogenous infection in all koalas, making a case for an urgent need to develop a therapeutic vaccine that might prevent KoRV-associated pathologies in these koalas. To this end, we determined the therapeutic effects of vaccinating koalas harbouring endogenous KoRV with a recombinant KoRV Env protein combined with a Tri-adjuvant. We found that vaccination led to a significant increase in circulating anti-KoRV IgG levels, as well as increase in neutralising antibodies. Our study also showed that post-vaccination antibodies were able to recognize epitopes on the Env protein that were unrecognised pre-vaccination, as well as resulting in an increase in the recognition of the previously recognised epitopes. The vaccine also induced antibodies that were cross-reactive against multiple KoRV-subtypes. Finally, we found a complete clearance of KoRV-A in plasma from koalas that had detectable levels of KoRV-A pre-vaccination. Similarly, there was a significant reduction in the expression of KoRV-B viral RNA levels post-vaccination. Collectively, this study showed that koalas harbouring endogenous KoRV can benefit from prophylactic vaccination against KoRV using a recombinant KoRV-A Env protein and that the mechanism of this protection might be through the boosting of natural anti-KoRV antibodies and expanding the breadth of the recognised epitopes.
Collapse
Affiliation(s)
- Olusola Olagoke
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| | - Bonnie L Quigley
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371 Australia
| | - Galit Tzipori
- Lone Pine Koala Sanctuary, Fig Tree Pocket, Queensland, Australia
| | - Peter Timms
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| |
Collapse
|
10
|
Brandies PA, Grueber CE, Ivy JA, Hogg CJ, Belov K. Disentangling the mechanisms of mate choice in a captive koala population. PeerJ 2018; 6:e5438. [PMID: 30155356 PMCID: PMC6108315 DOI: 10.7717/peerj.5438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/23/2018] [Indexed: 11/29/2022] Open
Abstract
Successful captive breeding programs are crucial to the long-term survival of many threatened species. However, pair incompatibility (breeding failure) limits sustainability of many captive populations. Understanding whether the drivers of this incompatibility are behavioral, genetic, or a combination of both, is crucial to improving breeding programs. We used 28 years of pairing data from the San Diego Zoo koala colony, plus genetic analyses using both major histocompatibility complex (MHC)-linked and non-MHC-linked microsatellite markers, to show that both genetic and non-genetic factors can influence mating success. Male age was reconfirmed to be a contributing factor to the likelihood of a koala pair copulating. This trend could also be related to a pair's age difference, which was highly correlated with male age in our dataset. Familiarity was reconfirmed to increase the probability of a successful copulation. Our data provided evidence that females select mates based on MHC and genome-wide similarity. Male heterozygosity at MHC class II loci was associated with both pre- and post-copulatory female choice. Genome-wide similarity, and similarity at the MHC class II DAB locus, were also associated with female choice at the post-copulatory level. Finally, certain MHC-linked alleles were associated with either increased or decreased mating success. We predict that utilizing a variety of behavioral and MHC-dependent mate choice mechanisms improves female fitness through increased reproductive success. This study highlights the complexity of mate choice mechanisms in a species, and the importance of ascertaining mate choice mechanisms to improve the success of captive breeding programs.
Collapse
Affiliation(s)
- Parice A. Brandies
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- San Diego Zoo Global, San Diego, CA, USA
| | | | - Carolyn J. Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Johnson RN, O'Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng Y, Whittington CM, Dennison S, Peel E, Haerty W, O'Neill RJ, Colgan D, Russell TL, Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AYY, Deakin JE, Di Palma F, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE, Heider TN, Jones EA, King A, Madden D, Graves JAM, Morris KM, Neaves LE, Patel HR, Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA, Wright B, Wilkins MR, Timms P, Belov K. Adaptation and conservation insights from the koala genome. Nat Genet 2018; 50:1102-1111. [PMID: 29967444 PMCID: PMC6197426 DOI: 10.1038/s41588-018-0153-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.
Collapse
Affiliation(s)
- Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia.
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
| | - Denis O'Meally
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Zhiliang Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Simon Y W Ho
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Will J Nash
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, CA, USA
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- UQ Genomics Initiative, University of Queensland, St Lucia, Queensland, Australia
| | - Camilla M Whittington
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Siobhan Dennison
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | | | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Don Colgan
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Tonia L Russell
- Ramaciotti Centre for Genomics, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Val Attenbrow
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Jason G Bragg
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Sydney, New South Wales, Australia
| | - Parice A Brandies
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda Yoon-Yee Chong
- Earlham Institute, Norwich Research Park, Norwich, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zachary Duda
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Greta J Frankham
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Amber K Gillett
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- School of Biological Sciences, Environment Institute, Centre for Applied Conservation Science, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew Hobbs
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Thomas N Heider
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Elizabeth A Jones
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew King
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Danielle Madden
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Jennifer A Marshall Graves
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Katrina M Morris
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Linda E Neaves
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Adam Polkinghorne
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles Robin
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan Salinas
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kyriakos Tsangaras
- Department of Translational Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Shafagh A Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Belinda Wright
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Ramaciotti Centre for Genomics, University of New South Wales, Kensington, New South Wales, Australia
| | - Peter Timms
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|