1
|
Ravindranath MH, Ravindranath NM, Amato-Menker CJ, El Hilali F, Filippone EJ. Diversity in the HLA-I Recognition of HLA-F Monoclonal Antibodies: HLA-F or HLA-Ib Monospecific, HLA-E or HLA-G Bispecific Antibodies with or without HLA-Ia Reactivity. Antibodies (Basel) 2024; 13:8. [PMID: 38390869 PMCID: PMC10885067 DOI: 10.3390/antib13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Previous investigators have used various anti-HLA-F monoclonal antibodies (mAbs) to demonstrate that the tissue distribution of HLA-F is highly restricted. Notably, these mAbs differed in their immunodiagnostic capabilities. Specifically, mAbs Fpep1.1 and FG1 detected HLA-F intracellularly in B cells but not on the cell surface, whereas mAb 3D11 detected HLA-F on the cell surface. The presence of HLA-F on T cells was recognized by mAb FG1 but not by mAb Fpep1.1. mAb 3D11 detected HLA-F on the cell surface of activated B cells and on peripheral blood lymphocytes, but not on the normal cells. Importantly, mAb 3D11 revealed that HLA-F exists as a heavy chain (HC) monomer, rather than as an HC associated with B2m. Although these mAbs are believed to be specific to HLA-F, their monospecificity has not been formally established, which is critical for immunodiagnostic and therapeutic purposes. Previously, we investigated the diversity of HLA class I reactivities of anti-HLA-E mAbs using HLA-I coated multiplex bead assays on a Luminex platform. We reported that more than 80% of the HLA-E mAbs were cross-reactive with other HLA-I molecules, with exceptionally few truly HLA-E-monospecific mAbs. In the present investigation, we generated IgG mAbs against HCs of HLA-F in Balb/C mice and examined the cross-reactivity of anti-HLA-F mAbs with other HLA-I alleles using a multiplex bead assay on the Luminex platform. Beads coated with an array of HLA homo- and heterodimers of different HLA-Ia (HLA-A, HLA-B, and HLA-C) and Ib (HLA-E, HLA-F, and HLA-G) alleles were used to examine the binding of the anti-HLA-F mAbs. Only two mAbs were HLA-F monospecific, and five were HLA-Ib restricted. Several anti-HLA-F mAbs cross-reacted with HLA-E (n = 4), HLA-G (n = 3), HLA-Ia alleles (n = 9), HLA-G and HLA-Ia (n = 2), and HLA-Ib and HLA-Ia (n = 6). This monospecificity and polyreactivity were corroborated by the presence of HLA-F monospecific and HLA-I-shared sequences. This study emphasizes the need to monitor the mono-specificity of HLA-F for reliable immunodiagnostics and passive immunotherapy.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Department of Hematology and Oncology, Children's Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Carly J Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA
| |
Collapse
|
2
|
Ormandjieva A, Yordanov S, Stoyanov H, Deliverska E, Shivarov V, Ivanova M. The role of non-classical and chain-related human leukocyte antigen polymorphisms in laryngeal squamous cell carcinoma. Mol Biol Rep 2023; 50:7245-7252. [PMID: 37418079 DOI: 10.1007/s11033-023-08629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is the major pathological subtype of laryngeal cancer. It has been shown that alterations of the expression of non-classical human leukocyte antigens (HLA) and the chain-related MIC molecules by malignant cells can lead to escape from the immune system control and certain allele variants may participate in immune editing and therefore be associated with modulation of cancer risk. The aim of the present study was to investigate the role of non-classical HLA class Ib and chain-related MIC polymorphisms, determined at the allelic level by next-generation sequencing (NGS), in patients from the Bulgarian population, diagnosed with LSCC. MATERIALS AND METHODS In the present study DNA samples from 48 patients with LSCC were used. Data was compared to 63 healthy controls analysed in previous studies. HLA genotyping was performed by using the AlloSeq Tx17 early pooling protocol and the library preparation AlloSeq Tx17 kit (CareDx). Sequencing was performed on MiniSeq sequencing platform (Illumina) and HLA genotypes were assigned with the AlloSeq Assign analysis software v1.0.3 (CareDx) and the IPD-IMGT/HLA database 3.45.1.2. RESULTS The HLA disease association tests revealed a statistically significant predisposing association of HLA-F*01:01:02 (Pc = 0.0103, OR = 24.0194) with LSCC, while HLA-F*01:01:01 (Pc = 8.21e-04, OR = 0.0485) has a possible protective association. Additionally we observed several haplotypes with statistically significant protective and predisposing associations. The strongest association was observed for F*01:01:01-H*01:01:01 (P = 0.0054, haplotype score=-2.7801). CONCLUSION Our preliminary study suggests the involvement of HLA class Ib in cancer development and the possible role of the shown alleles as biomarkers of LSCC.
Collapse
Affiliation(s)
- Anastasia Ormandjieva
- Department of Clinical Immunology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | | | - Hristo Stoyanov
- Department of Dental, Oral and Maxillofacial surgery, FDM, Medical University - Sofia, Sofia, Bulgaria
| | - Elitsa Deliverska
- Department of Dental, Oral and Maxillofacial surgery, FDM, Medical University - Sofia, Sofia, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Medical Faculty, Medical University, Sofia, Bulgaria
- Clinic of Clinical Immunology with Stem Cell Bank, University Hospital ''Alexandrovska'', Sofia, Bulgaria
| |
Collapse
|
3
|
Haukamp FJ, Hartmann ZM, Pich A, Kuhn J, Blasczyk R, Stieglitz F, Bade-Döding C. HLA-B*57:01/Carbamazepine-10,11-Epoxide Association Triggers Upregulation of the NFκB and JAK/STAT Pathways. Cells 2023; 12:cells12050676. [PMID: 36899812 PMCID: PMC10000580 DOI: 10.3390/cells12050676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.
Collapse
Affiliation(s)
- Funmilola Josephine Haukamp
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-9774; Fax: +49-511-532-2079
| | - Zoe Maria Hartmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joachim Kuhn
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Florian Stieglitz
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christina Bade-Döding
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
4
|
Papúchová H, Saxtorph MH, Hallager T, Jepsen IE, Eriksen JO, Persson G, Funck T, Weisdorf I, Macklon NS, Larsen LG, Hviid TVF. Endometrial HLA-F expression is influenced by genotypes and correlates differently with immune cell infiltration in IVF and recurrent implantation failure patients. Hum Reprod 2022; 37:1816-1834. [PMID: 35689445 DOI: 10.1093/humrep/deac118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/01/2022] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Is human leukocyte antigen (HLA)-F protein expressed in mid-secretory endometrium, and are its expression levels influenced by HLA-F gene polymorphisms and correlated with the abundance of uterine natural killer (uNK) cells and anti-inflammatory M2 macrophages? SUMMARY ANSWER HLA-F protein is expressed in mid-secretory endometrium, and levels are correlated with immune cell infiltration, plasma progesterone concentrations and HLA-F single-nucleotide polymorphisms (SNPs), however, women experiencing recurrent implantation failure (RIF) show differences when compared to women attending their first IVF treatment. WHAT IS KNOWN ALREADY The immunomodulatory HLA class Ib molecules HLA-G and HLA-F are expressed on the extravillous trophoblast cells and interact with receptors on maternal immune cells. Little is known regarding HLA-F expression in endometrial stroma and HLA-F function; furthermore, HLA-F and HLA-G SNP genotypes and haplotypes have been correlated with differences in time-to-pregnancy. STUDY DESIGN, SIZE, DURATION Primary endometrial stromal cell (ESC) cultures (n = 5) were established from endometrial biopsies from women attending IVF treatment at a fertility clinic. Basic HLA-F and HLA-G protein expression by the ESCs were investigated. A prospective controlled cohort study was performed including 85 women with a history of RIF and 36 control women beginning their first fertility treatment and with no history of RIF. In some analyses, the RIF group was divided into unknown cause, male infertility, female infertility, and both female and male infertility. Endometrial biopsies and blood samples were obtained the day equivalent to embryo transfer in a hormone-substituted cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS HLA protein expression by ESCs was characterized using flow cytometry and western blot. In the cohort study, the specific immune markers HLA-F and HLA-G, CD56 and CD16 (NK cells), CD163 (M2 macrophages), FOXP3 (regulatory T cells) and CD138 (plasma cells) were analysed by immunohistochemistry and a digital image analysis system in endometrial biopsies. Endometrial receptivity was assessed by an endometrial receptivity array test (the ERA® test). Endometrial biopsies were examined according to modified Noyes' criteria. SNPs at the HLA-F gene and HLA-G haplotypes were determined. MAIN RESULTS AND THE ROLE OF CHANCE HLA-F protein is expressed in the endometrium at the time of implantation. Furthermore, the HLA-F protein levels were different according to the womeńs HLA-F SNP genotypes and diplotypes, which have previously been correlated with differences in time-to-pregnancy. Endometrial HLA-F was positively correlated with anti-inflammatory CD163+ M2 macrophage infiltration and CD56+ uNK cell abundance for the entire cohort. However, this was not the case for CD56+ in the female infertility RIF subgroup. HLA-F levels in the endometrial stroma were negatively correlated with plasma progesterone concentrations in the RIF subgroup with known female infertility. Conversely, HLA-F and progesterone were positively correlated in the RIF subgroup with infertility of the male partner and no infertility diagnosis of the woman indicating interconnections between progesterone, HLA-F and immune cell infiltration. Glandular sHLA-G expression was also positively correlated with uNK cell abundance in the RIF subgroup with no female infertility but negatively correlated in the RIF subgroup with a female infertility diagnosis. LARGE SCALE DATA Immunohistochemistry analyses of endometrial biopsies and DNA sequencing of HLA genes. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION The control group of women attending their first IVF treatment had an anticipated good prognosis but was not proven fertile. A significant age difference between the RIF group and the IVF group reflects the longer treatment period for women with a history of RIF. The standardization of hormonal endometrial preparation, which allowed consistent timing of endometrial and blood sampling, might be a strength because a more uniform hormonal background may more clearly show an influence on the immune marker profile and HLA class Ib levels in the endometrium by other factors, for example genetic polymorphisms. However, the immune marker profile might be different during a normal cycle. WIDER IMPLICATIONS OF THE FINDINGS The findings further highlight the importance of HLA-F and HLA-G at the implantation site and in early pregnancy for pregnancy success. Diagnostic measures and modulation of the complex interactions between HLA class Ib molecules, maternal immune cells and hormonal factors may have potential to improve fertility treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Region Zealand Health Sciences Research Foundation and the Zealand University Hospital through the ReproHealth Research Consortium ZUH. The authors declared there are no conflicts of interest.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Malene Hviid Saxtorph
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark
| | - Trine Hallager
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Ida E Jepsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark
| | - Jens O Eriksen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Tina Funck
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Iben Weisdorf
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Nicholas S Macklon
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark.,London Women's Clinic, London, UK
| | - Lise Grupe Larsen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| |
Collapse
|
5
|
Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines 2022; 10:biomedicines10030693. [PMID: 35327495 PMCID: PMC8945713 DOI: 10.3390/biomedicines10030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Type B adverse drug reactions (ADRs) represent a significant threat as their occurrence arises unpredictable and despite proper application of the drug. The severe immune reaction Abacavir Hypersensitivity Syndrome (AHS) that arises in HIV+ patients treated with the antiretroviral drug Abacavir (ABC) strongly correlates to the presence of the human leukocyte antigen (HLA) genotype HLA-B*57:01 and discriminates HLA-B*57:01+ HIV+ patients from ABC treatment. However, not all HLA-B*57:01+ HIV+ patients are affected by AHS, implying the involvement of further patient-specific factors in the development of AHS. The establishment of a reliable assay to classify HLA-B*57:01 carriers as ABC sensitive or ABC tolerant allowed to investigate the T cell receptor (TCR) Vβ chain repertoire of effector cells and revealed Vβ6 and Vβ24 as potential public TCRs in ABC sensitive HLA-B*57:01 carriers. Furthermore, distinct effects of ABC on the cellular proteome of ABC sensitive and tolerant volunteers were observed and suggest enhanced activation and maturation of dentritic cells (DC) in ABC sensitive volunteers. Analysis of ABC-naïve cellular proteomes identified the T cell immune regulator 1 (TCIRG1) as a potential prognostic biomarker for ABC susceptibility and the involvement of significantly upregulated proteins, particularly in peptide processing, antigen presentation, interferon (IFN), and cytokine regulation.
Collapse
|
6
|
Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. J Pers Med 2022; 12:jpm12010040. [PMID: 35055355 PMCID: PMC8781935 DOI: 10.3390/jpm12010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Type B adverse drug reactions (ADRs) are unpredictable based on the drug’s pharmacology and represent a key challenge in pharmacovigilance. For human leukocyte antigen (HLA)-mediated type B ADRs, it is assumed that the protein/small-molecule interaction alters the biophysical and mechanistic properties of the antigen presenting cells. Sophisticated methods enabled the molecular appreciation of HLA-mediated ADRs; in several instances, the drug molecule occupies part of the HLA peptide binding groove and modifies the recruited peptide repertoire thereby causing a strong T-cell-mediated immune response that is resolved upon withdrawal of medication. The severe ADR in HLA-B*57:01+ patients treated with the antiretroviral drug abacavir (ABC) in anti-HIV therapy is an example of HLA-drug-T cell cooperation. However, the long-term damages of the HLA-B*57:01-expressing immune cells following ABC treatment remain unexplained. Utilizing full proteome sequencing following ABC treatment of HLA-B*57:01+ cells, we demonstrate stringent proteomic alteration of the HLA/drug presenting cells. The proteomic content indisputably reflects the cellular condition; this knowledge directs towards individual pharmacovigilance for the development of personalized and safe medication.
Collapse
|
7
|
Neuchel C, Fürst D, Tsamadou C, Schrezenmeier H, Mytilineos J. Extended loci histocompatibility matching in HSCT-Going beyond classical HLA. Int J Immunogenet 2021; 48:299-316. [PMID: 34109752 DOI: 10.1111/iji.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Unrelated haematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in a variety of haematologic malignancies. The continuous refinement of treatment protocols and supportive care paired with ongoing achievements in the technological field of histocompatibility testing enabled this transformation. Without a doubt, HLA matching is still the foremost criterion for donor selection in unrelated HSCT. However, HSCT-related treatment complications still occur frequently, often resulting in patients suffering severely or even dying as a consequence of such complications. Current literature indicates that other immune system modulating factors may play a role in the setting of HSCT. In this review, we discuss the current clinical evidence of a possible influence of nonclassical HLA antigens HLA-E, HLA-F, and HLA-G as well as the HLA-like molecules MICA and MICB, in HSCT.
Collapse
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Ulm, Germany
| |
Collapse
|
8
|
Hò GGT, Hiemisch W, Pich A, Behrens GMN, Blasczyk R, Bade-Doeding C. The Loss of HLA-F/KIR3DS1 Ligation Is Mediated by Hemoglobin Peptides. Int J Mol Sci 2020; 21:ijms21218012. [PMID: 33126487 PMCID: PMC7672607 DOI: 10.3390/ijms21218012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
The human leukocyte antigen (HLA)-Ib molecule, HLA-F, is known as a CD4+ T-cell protein and mediator of HIV progression. While HLA-Ia molecules do not have the chance to select and present viral peptides for immune recognition due to protein downregulation, HLA-F is upregulated. Post HIV infection, HLA-F loses the affinity to its activating receptor KIR3DS1 on NK cells leading to progression of the HIV infection. Several studies aimed to solve the question of the biophysical interface between HLA ligands and their cognate receptors. It became clear that even an invariant HLA molecule can be structurally modified by the variability of the bound peptide. We recently discovered the ability of HLA-F to select and present peptides and the HLA-F allele-specific peptide selection from the proteomic content using soluble HLA (sHLA) technology and a sophisticated MS method. We established recombinant K562 cells that express membrane-bound HLA-F*01:01, 01:03 or 01:04 complexes. While a recombinant soluble form of KIR3DS1 did not bind to the peptide-HLA-F complexes, acid elution of the peptides resulted in the presentation of HLA-F open conformers, and the binding of the soluble KIR3DS1 receptor increased. We used CD4+/HIV− and CD4+/HIV+ cells and performed an MS proteome analysis. We could detect hemoglobin as significantly upregulated in CD4+ T-cells post HIV infection. The expression of cellular hemoglobin in nonerythroid cells has been described, yet HLA-Ib presentation of hemoglobin-derived peptides is novel. Peptide sequence analysis from HLA-F allelic variants featured hemoglobin peptides as dominant and shared. The reciprocal experiment of binding hemoglobin peptide fractions to the HLA-F open conformers resulted in significantly diminished receptor recognition. These results underpin the molecular involvement of HLA-F and its designated peptide ligand in HIV immune escape.
Collapse
Affiliation(s)
- Gia-Gia T. Hò
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Wiebke Hiemisch
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
- German Center for Infections Research, partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
- Correspondence: ; Tel.: +49-511-532-9744; Fax: +49-511-532-2079
| |
Collapse
|
9
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
10
|
HLA-F Allele-Specific Peptide Restriction Represents an Exceptional Proteomic Footprint. Int J Mol Sci 2019; 20:ijms20225572. [PMID: 31717259 PMCID: PMC6888383 DOI: 10.3390/ijms20225572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Peptide-dependent engagement between human leucocyte antigens class I (HLA-I) molecules and their cognate receptors has been extensively analyzed. HLA-F belongs to the non-classical HLA-Ib molecules with marginal polymorphic nature and tissue restricted distribution. The three common allelic variants HLA-F*01:01/01:03/01:04 are distinguished by polymorphism outside the peptide binding pockets (residue 50, α1 or residue 251, α3) and are therefore not considered relevant for attention. However, peptide selection and presentation undergoes a most elaborated extraction from the whole available proteome. It is known that HLA-F confers a beneficial effect on disease outcome during HIV-1 infections. The interaction with the NK cell receptor initiates an antiviral downstream immune response and lead to delayed disease progression. During the time of HIV infection, HLA-F expression is upregulated, while its interaction with KIR3DS1 is diminished. The non-polymorphic nature of HLA-F facilitates the conclusion that understanding HLA-F peptide selection and presentation is essential to a comprehensive understanding of this dynamic immune response. Utilizing soluble HLA technology we recovered stable pHLA-F*01:01, 01:03 and 01:04 complexes from K562 cells and analyzed the peptides presented. Utilizing a sophisticated LC-MS-method, we analyzed the complete K562 proteome and matched the peptides presented by the respective HLA-F subtypes with detected proteins. All peptides featured a length of 8 to 24 amino acids and are not N-terminally anchored; the C-terminus is preferably anchored by Lys. To comprehend the alteration of the pHLA-F surface we structurally compared HLA-F variants bound to selected peptides. The peptides were selected from the same cellular content; however, no overlap between the proteomic source of F*01:01, 01:03 or 01:04 selected peptides could be observed. Recognizing the balance between HLA-F expression, HLA-F polymorphism and peptide selection will support to understand the role of HLA-F in viral pathogenesis.
Collapse
|
11
|
The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity. Pharmaceutics 2019; 11:pharmaceutics11100536. [PMID: 31618895 PMCID: PMC6835980 DOI: 10.3390/pharmaceutics11100536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.
Collapse
|
12
|
A role for both HLA-F and HLA-G in reproduction and during pregnancy? Hum Immunol 2019; 81:127-133. [PMID: 31558330 DOI: 10.1016/j.humimm.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023]
Abstract
The human major histocompatibility complex includes a group of non-classical HLA class I genes, HLA-E, -F and -G. While nearly all focus since the discovery of these class Ib molecules have been on basic biochemistry and molecular biology of HLA-G and HLA-E, as well as their expression patterns, functions in immune modulation and during pregnancy, and also possible implications in a range of diseases, in infertility and pregnancy complications, HLA-F has nearly been ignored. However, recent discoveries show that HLA-F can be expressed as both open conformers binding to a number of KIRs on primarily NK cells, as well as peptide-bound HLA-F binding to ILT2 and ILT4. Furthermore, a number of reports indicate a possible involvement of HLA-F in viral infections, in cancer immunology, and in fertility and reproduction, which may initiate more interest in this rather unknown HLA class I molecule. In this short review, we focus on recent discoveries that indicate a functional role for HLA-F in reproduction and during pregnancy, and the role of HLA-F in relation to HLA-G.
Collapse
|