1
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
2
|
Yashwanth BS, Pinto N, Sathiyanarayanan A, Chaudhari A, Rasal KD, Goswami M. Functional characterization of Labeo rohita muscle cell line for in vitro research. Mol Biol Rep 2023:10.1007/s11033-023-08427-z. [PMID: 37179501 DOI: 10.1007/s11033-023-08427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Labeo rohita represents the most dominant fish species in Indian aquaculture and the fish cell lines have been used as an excellent in vitro platform for performing various biological research. METHODS AND RESULTS The LRM cell culture developed from the muscle tissue of L. rohita was used to study the in vitro applications. The developed muscle cells were maintained in a Leibovitz's-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF at 28 oC temperature. The LRM cells showed fibroblastic-like morphology and was authenticated by sequencing mitochondrial gene 16S rRNA. The expression of myogenic regulatory factors (MRFs) was studied in different stages of LRM cells; however, the expression patterns varied at different passages. The MEF2A, Mrf-4, and Myogenin expressions were higher in passage 25, while the expression of MyoD was maximum in passage 15, and the expression of Myf-5 was highest in passage 1. The transfection efficiency of LRM cells revealed 14 % of the GFP expression with a pmaxGFP vector DNA. The LRM cells were susceptible to the extracellular products prepared from Aeromonas hydrophilla and Edwardsiella tarda. The acute cytotoxicity of six heavy metals (Hg, Cd, Zn, Cu, Pb, Ni) was assessed in LRM cells by a dose-dependent manner in comparison to IC50 values obtained from MTT and NR assays. A revival rate of 70-75% was achieved when the LRM cells were cryopreserved at - 196 °C using liquid nitrogen. CONCLUSION The developed muscle cells serve as an functional in vitro tool for toxicological and biotechnological studies.
Collapse
Affiliation(s)
- B S Yashwanth
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Nevil Pinto
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - A Sathiyanarayanan
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
3
|
Guo H, Whitehouse L, Danzmann R, Dixon B. Effects of juvenile thermal preconditioning on the heat-shock, immune, and stress responses of rainbow trout upon a secondary thermal challenge. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111413. [PMID: 36893937 DOI: 10.1016/j.cbpa.2023.111413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Higher water temperatures and pathogens are both significant factors that negatively affect the welfare of teleost fish. In aquaculture, compared to natural populations, these problems are especially exacerbated, as the animals have relatively limited mobility, and the higher density promotes faster spread of infectious diseases. Because of the potential harm these stressors can inflict, methods that can limit the damage of these stressors are particularly valuable. As a method of interest, early-life thermal preconditioning of animals demonstrated some potential for effective improvements in thermotolerance. However, the potential effects of the method on the immune system via the heat-stress model have not been explored. In this experiment, juvenile-stage thermal preconditioned rainbow trout (Oncorhynchus mykiss) were subjected to a secondary thermal challenge, animals were collected and sampled at the time of lost equilibrium. The effects of preconditioning on the general stress response was assessed by measuring the plasma cortisol levels. In addition, we also examined hsp70 and hsc70 mRNA levels in the spleen and gill tissues, as well as IL-1β, IL-6, TNF-α, IFN-1, β2m, and MH class I transcripts via qRT-PCR. No changes in CTmax were observed between the preconditioned and control cohorts upon the second challenge. IL-1β and IL-6 transcripts were generally upregulated with increased temperature of the secondary thermal challenge, whereas IFN-1 transcripts were upregulated in the spleen, but downregulated in the gills, along with MH class I. The juvenile thermal preconditioning produced a series of changes in transcript levels for IL-1β, TNF-α, IFN-1, and hsp70 but the dynamics of these differences were inconsistent. Finally, analysis of plasma cortisol levels presented significantly lower cortisol levels in the pre-conditioned animals compared to the non-pre-conditioned control cohort.
Collapse
Affiliation(s)
- Huming Guo
- University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lindy Whitehouse
- University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. https://twitter.com/LindyWhitehouse
| | - Roy Danzmann
- University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brian Dixon
- University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
4
|
Liu S, Martin KE, Gao G, Long R, Evenhuis JP, Leeds TD, Wiens GD, Palti Y. Identification of Haplotypes Associated With Resistance to Bacterial Cold Water Disease in Rainbow Trout Using Whole-Genome Resequencing. Front Genet 2022; 13:936806. [PMID: 35812729 PMCID: PMC9260151 DOI: 10.3389/fgene.2022.936806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial cold water disease (BCWD) is an important disease in rainbow trout aquaculture. Previously, we have identified and validated two major QTL (quantitative trait loci) for BCWD resistance, located on chromosomes Omy08 and Omy25, in the odd-year Troutlodge May spawning population. We also demonstrated that marker-assisted selection (MAS) for BCWD resistance using the favorable haplotypes associated with the two major QTL is feasible. However, each favorable haplotype spans a large genomic region of 1.3–1.6 Mb. Recombination events within the haplotype regions will result in new haplotypes associated with BCWD resistance, which will reduce the accuracy of MAS for BCWD resistance over time. The objectives of this study were 1) to identify additional SNPs (single nucleotide polymorphisms) associated with BCWD resistance using whole-genome sequencing (WGS); 2) to validate the SNPs associated with BCWD resistance using family-based association mapping; 3) to refine the haplotypes associated with BCWD resistance; and 4) to evaluate MAS for BCWD resistance using the refined QTL haplotypes. Four consecutive generations of the Troutlodge May spawning population were evaluated for BCWD resistance. Parents and offspring were sequenced as individuals and in pools based on their BCWD phenotypes. Over 12 million SNPs were identified by mapping the sequences from the individuals and pools to the reference genome. SNPs with significantly different allele frequencies between the two BCWD phenotype groups were selected to develop SNP assays for family-based association mapping in three consecutive generations of the Troutlodge May spawning population. Among the 78 SNPs derived from WGS, 77 SNPs were associated with BCWD resistance in at least one of the three consecutive generations. The additional SNPs associated with BCWD resistance allowed us to reduce the physical sizes of haplotypes associated with BCWD resistance to less than 0.5 Mb. We also demonstrated that the refined QTL haplotypes can be used for MAS in the Troutlodge May spawning population. Therefore, the SNPs and haplotypes reported in this study provide additional resources for improvement of BCWD resistance in rainbow trout.
Collapse
Affiliation(s)
- Sixin Liu
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
- *Correspondence: Sixin Liu,
| | | | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Roseanna Long
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| |
Collapse
|
5
|
Wei C, Yang X, Kang M, Cao Z, Sun Y, Zhou Y. An established kidney cell line from humpback grouper (Cromileptes altivelis) and its susceptibility to bacteria and heavy metals. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:521-533. [PMID: 35391635 DOI: 10.1007/s10695-022-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Humpback grouper (Cromileptes altivelis), one kind of commercial fish with considerable economic value, has been recognized as a promising candidate for mariculture. In the wake of the development of aquaculture industry, the breeding density of C. altivelis has increased gradually, which gave rise to the occurrence of various pathogenic diseases. In our research, we established a new kidney cell line (designated as CAK) from humpback grouper and evaluated its susceptibility to bacteria and heavy metals. The results of our study showed that the optimal growth temperature was 26 °C, and optimal medium was L-15 supplemented with 20% fetal bovine serum (FBS). The sequencing of 18S rRNA gene indicated that CAK cell line was derived from C. altivelis. Chromosome analysis showed that the number of chromosome in CAK was 48. After being transfected of pEGFP-N3 plasmid, high transfection efficiency of CAK was observed, suggesting the potential to be used for the study of foreign functional genes. Moreover, the bacterial susceptibility results revealed that CAK cells were sensitive to Vibrio harveyi and Edwardsiella tarda, especially V. harveyi. Meanwhile, three heavy metals (Hg, Cu, and Cd) had toxic effects on the CAK cells with a dose-dependent manner. To sum up, the CAK cell line might be an ideal tool in vitro for analyzing the function of exogenous genes, bacterial susceptibility, and toxicity assay of heavy metals.
Collapse
Affiliation(s)
- Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Minjie Kang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China.
- College of Marine Sciences, Hainan University, 58 Renmin Avenue, Haikou, 570228, People's Republic of China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China.
- College of Marine Sciences, Hainan University, 58 Renmin Avenue, Haikou, 570228, People's Republic of China.
| |
Collapse
|
6
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
7
|
Gong H, Wang Q, Lai Y, Zhao C, Sun C, Chen Z, Tao J, Huang Z. Study on Immune Response of Organs of Epinephelus coioides and Carassius auratus After Immersion Vaccination With Inactivated Vibrio harveyi Vaccine. Front Immunol 2021; 11:622387. [PMID: 33633740 PMCID: PMC7900426 DOI: 10.3389/fimmu.2020.622387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Immersion vaccination relies on the response of fish mucosa-associated lymphoid tissues, the Crucian carp (Carassius auratus) and Grouper (Epinephelus coioides) were researched in this paper to examine local mucosal immune responses and associated humoral system responses following immersion vaccination. We administered 1.5 × 107 CFU/ml formalin-inactivated Vibrio harveyi cells and measured mucus and serum antibody titers as well as IgM, MHC II mRNA levels in immune organs. The mucosal antibody response preceded the serum response indicating a role for local mucosal immunity in immersion vaccination. IgM and MHC II mRNA levels were relatively greater for the spleen and head kidney indicating the importance and central position of systemic immunity. Expression levels were also high for the gills while skin levels were the lowest. IgM and MHC II mRNA levels were altered over time following vaccination and the hindgut, liver and spleen were similar indicating a close relationship, so the absolute value of r is used to analyze the correlation among different organs immunized. It can be inferred the existence of an internal immune molecular mechanism for Immune synergy hindgut-liver-spleen, from the peak time (14th day), the relative ratio of genes expression in the same tissues between the immunized grouper and the control group (26 times), and Pearson correlation coefficient (0.8<|r|<1). Injection challenges with live V. harveyi indicated that the relative protection rates for the crucian carp and Grouper was basically the same at 44.4% and 47.4%, respectively. It is believe that crucian carp may be used as a substitute for the valuable grouper in immunity experiment, just from aspect of the relative percent survival (RPS) and how it changes with time. But they were not consistent about the IgM mRNA expression between that of crucian carp and grouper after immersion the Vibrio vaccine.
Collapse
Affiliation(s)
- Hua Gong
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingtiao Lai
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changchen Zhao
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chenwen Sun
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zonghui Chen
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiafa Tao
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhibin Huang
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
8
|
STAT3/SOCS3 axis contributes to the outcome of salmonid whirling disease. PLoS One 2020; 15:e0234479. [PMID: 32542025 PMCID: PMC7295227 DOI: 10.1371/journal.pone.0234479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
There are differences in disease susceptibility to whirling disease (WD) among strains of rainbow trout. The North American strain Trout Lodge (TL) is highly susceptible, whereas the German Hofer (HO) strain is more resistant. The suppressor of cytokine signaling (SOCS) proteins are key in inhibiting cytokine signaling. Their role in modulating the immune response against whirling disease is not completely clear. This study aimed at investigating the transcriptional response of SOCS1 and SOCS3 genes to Myxobolus cerebralis along with that of several upstream regulators and immune response genes. M. cerebralis induced the expression of SOCS1, the IL-6-dependent SOCS3, the anti-inflammatory cytokine IL-10 and the Treg associated transcription factor FOXP3 in TL fish at multiple time points, which likely caused a restricted STAT1 and STAT3 activity affecting the Th17/Treg17 balance. The expression of SOCS1 and the IL-6-dependent SOCS3 was induced constraining the activation of STAT1 and STAT3 in TL fish, thereby causing Th17/Treg17 imbalance and leaving the fish unable to establish a protective immune response against M. cerebralis or control inflammatory reactions increasing susceptibility to WD. Conversely, in HO fish, the expression of SOCS1 and SOCS3 was restrained, whereas the expression of STAT1 and IL-23-mediated STAT3 was induced potentially enabling more controlled immune responses, accelerating parasite clearance and elevating resistance. The induced expression of STAT1 and IL-23-mediated STAT3 likely maintained a successful Th17/Treg17 balance and enabled fish to promote effective immune responses favouring resistance against WD. The results provide insights into the role of SOCS1 and SOCS3 in regulating the activation and magnitude of host immunity in rainbow trout, which may help us understand the mechanisms that underlie the variation in resistance to WD.
Collapse
|
9
|
Abolfathi M, Akbarzadeh A, Hajimoradloo A, Joshaghani HR. Seasonal changes of hydrolytic enzyme activities in the skin mucus of rainbow trout, Oncorhynchus mykiss at different body sizes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103499. [PMID: 31560872 DOI: 10.1016/j.dci.2019.103499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/22/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
The innate immune factors in the skin mucus of fish are affected by the ecological and physiological conditions such as developmental stage and seasonal cycle. The aim of this study was to investigate the seasonal changes in soluble protein and the hydrolytic enzyme activities of the skin mucus of rainbow trout including lysozyme, alkaline phosphatase (ALP) and proteases at different body sizes. Skin mucus samples were collected over three consecutive season periods including winter, spring and late summer. In each season, sampling was performed separately from three different weight groups including 2-20 g (W1), 100-200 g (W2) and 400-600 g (W3) fish. Our results showed a significant increase of soluble protein in all three weight groups from winter to spring when water temperature elevated from 9 °C to 14 °C. Moreover lysozyme activity was remarkably elevated in W1 fish from winter to late summer. In all three seasons, the activity of lysozyme was significantly decreased along with increasing the fish size. Contrary to lysozyme, the activity of proteases and ALP showed a decreasing trend from winter to late summer. A significant positive correlation was found between the proteases and ALP activity, proposing that both proteases and ALP might have important synergic roles in the mucosal innate immune function of rainbow trout. Moreover, using reverse transcription PCR (RT-PCR) analysis of some proteases genes including cathepsin-L and cathepsin-D, we demonstrated that the proteases are transcribed and likely synthesized in epidermal mucus cells of rainbow trout. The present study confirmed seasonal changes of hydrolytic enzyme activities in the skin mucus of rainbow trout across all three weight groups, with the highest variation in juvenile fish.
Collapse
Affiliation(s)
- Marzieh Abolfathi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Department of Medical Laboratory Sciences, Golestan University of Medical Sciences School of Paramedicine, Gorgan, Iran
| |
Collapse
|